Rotating machinery is a primary element of mechanical equipment, and thus fault diagnosis of its key components is very important to improve the reliability and safety of modern industrial systems. The key point to diagnose the faults of these components is to extract effectively the hidden fault information. However, the actual vibration signals of rotating machinery have nonlinear and non-stationary characteristics, so traditional signal decomposition methods are unable to extract the frequency components accurately, leading to spectrum overlap of the decomposed sub-signals. Therefore, a rotating machinery fault diagnosis approach based on Fourier transform multi-filter decomposition (FTMFD), fuzzy entropy (FE), joint mutual information maximization (JMIM), and a light gradient boosting machine (LightGBM), is proposed in this paper. FTMFD is used to extract the frequency domain information of the raw vibration signals, whereas FE is used to calculate and extract the fault information of the decomposed sub-signals. Then feature selection is carried out by using JMIM to reduce the influence of redundant features on data analysis and classification accuracy. Furthermore, LightGBM is used to rank the candidate features and outputs the fault diagnosis result. Experimental results from two real datasets show that the proposed method achieves higher accuracy with fewer features than some existing methods for fault recognition. Various working conditions are also considered and verified.
The key to fault diagnosis of rotating machinery is to extract fault features effectively and select the appropriate classification algorithm. As a common signal decomposition method, the effect of wavelet packet decomposition (WPD) largely depends on the applicability of the wavelet basis function (WBF). In this paper, a novel fault diagnosis approach for rotating machinery based on feature importance ranking and selection is proposed. Firstly, a two-step principle is proposed to select the most suitable WBF for the vibration signal, based on which an optimized WPD (OWPD) method is proposed to decompose the vibration signal and extract the fault information in the frequency domain. Secondly, FE is utilized to extract fault features of the decomposed subsignals of OWPD. Thirdly, the categorical boosting (CatBoost) algorithm is introduced to rank the fault features by a certain strategy, and the optimal feature set is further utilized to identify and diagnose the fault types. A hybrid dataset of bearing and rotor faults and an actual dataset of the one-stage reduction gearbox are utilized for experimental verification. Experimental results indicate that the proposed approach can achieve higher fault diagnosis accuracy using fewer features under complex working conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.