A shipborne ad-hoc network (SANET), a maritime counterpart of the terrestrial vehicle ad-hoc network, can provide ships with diverse multimedia services by substituting digital maritime VHF communications for expensive satellite communications. This article proposes ad-hoc self-organizing TDMA (ASO-TDMA), a medium access control (MAC) protocol targeting SANETs. Frames in ASO-TDMA are divided into several sub-frames, and based on the proposed rules for assigning time slots, ships can only reserve time slots for data transfers through their available sub-frames. Accordingly, ASO-TDMA provides better performance in terms of reducing receiver collisions from hidden terminal problems compared to self-organizing TDMA (SO-TDMA) and carrier-sensing TDMA (CS-TDMA), two existing MAC protocols for maritime VHF communications. In addition, the article compares the performance of the three MAC protocols in terms of delays and collision rates (CRs). The results suggest that, given the same delay, ASO-TDMA can reduce the CR by as much as 30% in comparison with SO-TDMA and CS-TDMA. Similarly, given the same CR, ASO-TDMA can reduce delays by as much as 26% in comparison with SO-TDMA and CS-TDMA.
To efficiently utilize nonexclusive underwater acoustic frequencies, we propose an Underwater Cooperative Spectrum Sharing (UCSS) protocol for a centralized underwater cognitive acoustic network that mainly consists of two parts. In the first part, to check the random occurrence of interferers periodically, the time domain is divided into frames that consist of a sensing and a non-sensing sub-frame. Then, we set the ratio of the two sub-frames to enhance the sensing rate via simulations. As a result, there exists the upper limit of the ratio, which can be used for determining the proportion of the sensing time within a frame. The second part is to design two heuristic resource allocation (RA) algorithms. One is a multiround RA (MRRA), where a central entity allocates a data channel (i.e., resource) to a CU each round so that multiple rounds are executed until no CUs need to be allocated or there is a lack of data channels. The other is a single-round RA (SRRA), where a CU is allocated to as many data channels as its QoS within a round. We also specify four rules to determine the allocation order of the CUs: random, fixed, high-QoS-based, and low-channel allocation-rate-based. In this study, we investigate the best RA allocation order pair supporting the highest channel allocation rate and fairness index via extensive simulations. It is shown that the MRRA outperformed the SRRA, regardless of allocation orders at any conditions, and the random and low-channel allocation-rate-based allocation orders with MRRA supported the best performance. In particular, even without the optimization process, the MRRA guarantees more than 95% fairness.
Abstract:The propagation delay in mobile underwater acoustic sensor network (MUASN) is asymmetric because of its low sound propagation speed, and this asymmetry grows with the increase in packet travel time, which damages the collision avoidance mechanism of the spatial reuse medium access control (MAC) protocols for MUASN. We propose an asymmetric propagation delay-aware time division multiple access (APD-TDMA) for a MUASN in which periodic data packet transmission is required for a sink node (SN). Collisions at the SN are avoided by deferring data packet transmission after reception of a beacon packet from the SN, and data packets are arrived at the SN in a packet-train manner. The time-offset, which is the time for a node to wait before the transmission of a data packet after reception of a beacon packet, is determined by estimating the propagation delay over two consecutive cycles such that the idle interval at the SN is minimized, and this time-offset is announced by the beacon packet. Simulation results demonstrate that the APD-TDMA improves the channel access delay and the channel utilization by approximately 20% and 30%, respectively, compared with those of the block time bounded TDMA under the given network conditions.
In this paper, we propose the method to standardize acoustic frequencies for underwater wireless acoustic sensor networks (UWASNs) by applying the channel raster used in the terrestrial mobile communications. The standardization process includes: (1) Setting the available acoustic frequency band where a channel raster is employed via the frequency specification analysis of the state-of-the art underwater acoustic communication modems. (2) Defining the center frequencies and the channel numbers as a function of channel raster, and the upper limit of the value of channel raster. (3) Determining the value of the channel raster suitable for the available acoustic frequency band via simulations. To set the value, three performance metrics are considered: the collision rate, the idle spectrum rate, and the receiver computational complexity. The simulation results show that the collision rate and the idle spectrum rate according to the value of channel raster have a trade-off relationship, but the influence of channel raster on the two performance metrics is insignificant. However, the receiver computational complexity is enhanced remarkably as the value of channel raster increases. Therefore, setting the value of channel raster close to its upper limit is the most adequate in respect of mitigating the occurrence of a collision and enhancing the reception performance. The standardized frequencies based on channel raster can guarantee the frequency compatibility required for the emerging technologies like the Internet of Underwater Things (IoUT) or the underwater cognitive radio, but also improves the network performance by avoiding the arbitrary use of frequencies.
Abstract:This paper analytically investigates a bit error rate (BER) performance of radio over free space optical (FSO) systems considering laser phase noise under Gamma-Gamma turbulence channels. An external modulation using a dual drive Mach-Zehnder modulator (DD-MZM) and a phase shifter is employed because a DD-MZM is robust against a laser chirp and provides high spectral efficiency. We derive a closed form average BER as a function of different turbulence strengths and laser diode (LD) linewidth, and investigate its analytical behavior under practical scenario. As a result, for a given average SNR with normalized perturbation, it is shown that the difference of average BER corresponding to two LDs (with linewidth of 624MHz and 10MHz) under weak turbulence is almost 3 times larger than that under strong turbulence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.