In view of the complex multi-scale target detection environment of ultrasonic atlas of weld defect and the poor detection performance of existing algorithms for the multiple small target defects, the Faster RCNN convolution neural network is applied to weld defect detection, and a Fast RCNN deep learning network is proposed in combination with an improved ResNet 50. Based on the coexistence of multiple small targets and multi-scale target detection, this paper proposes to combine deformable network, FPN network and ResNet50 to improve the detection performance of the algorithm for multi-scale targets, especially small targets. Based on the efficiency and accuracy of candidate frame selection, K-means clustering algorithm and ROI Align algorithm are proposed, and the anchors points and candidate frames suitable for weld defect data sets are customized for accurate positioning. Through the self-made ultrasonic atlas data set of weld defects and experimental verification of the improved algorithm in this paper, the overall mean average precision has reaches 93.72%, and the average precision of small target defects such as “stoma” and “crack” has reaches 92.5% and 88.9% respectively, which is 4.8% higher than the original Faster RCNN algorithm. At the same time, through the ablation experiments and comparison experiments with other mainstream target detection algorithms, it is proved that the improved method proposed in this paper improves the detection performance and is superior to other algorithms. The actual industrial detection scene proves that it basically meets the requirements of weld defect detection, and can provide a reference for the intelligent detection method of weld defects.
Based on the research background of in situ automatic ultrasonic phased array inspection of irregular porous castings, due to the limited in situ inspection stations, complex shape of irregular porous castings, and extreme multireflection structural features, it is necessary to identify the positioning inspection features among multiple features to be inspected and plan the optimal inspection path. This research is interested in the porous location recognition and its detection path planning of irregular porous castings. For this, a point cloud-based multifeature contour recognition and location algorithm were proposed to simultaneously extract and locate the hole feature and cylindrical feature from an irregular porous castings. Furthermore, a detection path planning method was put forward to search the shortest robot’s detection path based on the above acquired features by visual recognition and positioning technology. First, through the calibration of the industrial robot tool coordinate system and the internal and external parameters of the camera, the “EyeinHand” hand-eye conversion relationship was established. Second, the robot vision system collects the point cloud information of the area to be inspected and performs point cloud splicing, the accuracy of the original data, the removal of noise such as invalid points, outliers and internal noise points, on this basis, the boundary curve of the hole to be inspected was extracted, the cylindrical equation was fitted, its geometric center was calculated, and the central coordinates and axis direction of the contour of the hole to be inspected were obtained. Finally, all the detection paths were traversed through the multibranch tree to obtain the optimal detection path of the detection points of multiple targets. The experimental results show that the positioning accuracy of the feature of the hole to be inspected by the vision system is 0.107 mm, the aperture extraction accuracy is 0.002 mm, the cylinder fitting accuracy is 0.04 mm, and the calculation accuracy of the angle between the two axes is within 0.4. When the number of features to be inspected is different, the average moving distance can be saved by 10.7% by using the end effector after path optimization. The feasibility of in situ automatic ultrasonic phased array detection for irregular porous castings using by visual positioning is verified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.