Time-domain approaches are presented for analysis of the dynamic response of aeroservoelastic systems to atmospheric gust excitations. The continuous and discrete gust inputs are defined in the time domain. The time-domain approach to continuous gust response uses a state-space formulation that requires the frequency-dependent aerodynamic coefficients to be approximated with the rational function of a Laplace variable. A hybrid method which combines the Fourier transform and time-domain approaches is used to calculate discrete gust response. The purpose of this approach is to obtain a time-domain state-space model without using rational function approximation of the gust columns. Three control schemes are designed for gust alleviation on an elastic aircraft, and three control surfaces are used: aileron, elevator and spoiler. The signals from the rate of pitch angle gyroscope or angle of attack sensor are sent to the elevator while the signals from accelerometers at the wing tip and center of gravity of the aircraft are sent to the aileron and spoiler, respectively. All the control laws are based on classical control theory. The results show that acceleration at the center of gravity of the aircraft and bending-moment at the wing-root section are mainly excited by rigid modes of the aircraft and the accelerations at the wing-tip are mainly excited by elastic modes of the aircraft. All the three control schemes can be used to alleviate the wing-root moments and the accelerations. The gust response can be alleviated using control scheme 3, in which the spoiler is used as a control surface, but the effects are not as good as those of control schemes 1 and 2.aeroelastic, aeroservoelastic, gust response, gust alleviation, control scheme design Citation:Wu Z G, Chen L, Yang C, et al. Gust response modeling and alleviation scheme design for an elastic aircraft.
Aeroelastic problems are encountered at the preliminary design stage of flexible wings for large aircraft. A three-dimensional finite element model of a high-aspect-ratio wing was built, and the influence of the front and rear spar positions on the results of the aeroelastic analysis and optimization was studied to improve the wing structure desgin. The most feasible and optimal solutions were effectively obtained by aeroelastic optimization. In particular, the position parameter of the front spar has a greater influence on the aeroelastic analysis and optimization than the rear spar. In addition, some key constraints became restrictive leading to a rapid increase in the structural weight. Therefore, reasonable constraints were necessary for the oprimization of results. large aircraft, aeroelasticity, optimization design, high-aspect-ratio wing, spar Citation: Wan Z Q, Liu D Y, Tang C H, et al. Studies on the influence of spar position on aeroelastic optimization of a large aircraft wing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.