Abstract:This study aimed to evaluate the applicability of a machine learning approach to the description of residential mobility patterns of households in the Seoul metropolitan region (SMR). The spatial range and temporal scope of the empirical study were set to 2015 to review the most recent residential mobility patterns in the SMR. The analysis data used in this study included the Internal Migration Statistics microdata provided by the Microdata Integrated Service of Statistics Korea. We analysed the residential relocation distance of households in the SMR using machine learning techniques, such as ordinary least squares regression and decision tree regression. The results of this study showed that a decision tree model can be more advantageous than ordinary least squares regression in terms of explanatory power and estimation of moving distance. A large number of residential movements are mainly related to the accessibility to employment markets and some household characteristics. The shortest movements occur when households with two or more members move into densely populated districts. In contrast, job-based residential movements are relatively farther. Furthermore, we derived knowledge on residential relocation distance, which can provide significant information for the urban management of metropolitan residential districts and the construction of reasonable housing policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.