Quantum sources that provide broadband biphotons entangled in both polarization and time-energy degrees of freedom are a rich quantum resource that finds many applications in quantum communication, sensing, and metrology. Creating such a source while maintaining high entanglement quality over a broad spectral range is a challenge, which conventionally requires various compensation steps to erase temporal, spectral, or spatial distinguishabilities. Here, we point out that in fact compensation is not always necessary. The key to generate broadband polarization-entangled biphotons via type-II spontaneous parametric downcoversion (SPDC) without compensation is to use nonlinear materials with sufficiently low group birefringence that the biphoton bandwidth becomes dispersion-limited. Most nonlinear crystals or waveguides cannot meet this condition, but it is easily met in fiber-based systems. We reveal the interplay of group birefringence and dispersion on SPDC bandwidth and polarization entanglement quality. We show that periodically poled silica fiber (PPSF) is an ideal medium to generate high-concurrence (>0.977) polarization-entangled photons over a broad spectral range (>77nm), directly and without compensation. This is the highest polarization-entanglement concurrence reported that is maintained over a broad spectral range from a compensation-free source.
We have fabricated an Yb-doped passively Q-switching fiber laser based on WS(2) saturable absorber. Both the operating wavelength and the repetition rate can be tuned in a wide range. The operating wavelength can be continuously tuned from 1027 nm to 1065 nm under the Q-switching state at a fixed pump power, while the repetition rate increases from 60.2 kHz to 97.0 kHz by varying pump power at a fixed wavelength of 1048.1 nm. The shortest pulse duration of 1.58 µs was observed. To the best of our knowledge, it's the first demonstration of WS(2)-based passively Q-switching fiber laser with a wide tunable range at 1.0 μm band.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.