A novel amidoxime (AO)-based adsorbent, integrating the high affinity of AO groups and size effect of nanomaterials in nanofibrous composite mats, has been prepared by a two-nozzle electrospinning process for uranium extraction from seawater.
Uranium recovery from seawater was investigated in simulated seawater in the laboratory and in natural seawater from the coasts of China with different amidoximebased (AO) ultrahigh molecular weight polyethylene (UHMWPE) fibers. The capacities of adsorbents AO-UHMWPE-1 and -2 were 4.54 and 2.41 mg U/g-adsorbent, respectively, after 24 h of adsorption in the simulated seawater with 330 ppb U. Their capacities were 2.93 and 1.95 mg U/gadsorbent, respectively, after 42 days of adsorption in simulated seawater flow-through experiments with 3.3 ppb U. However, because of sediment and marine organism contamination, the capacities were 0.25 and 0.04 mg U/g-adsorbent, respectively, after 68 days of adsorption in natural seawater in Xiamen. The capacity of AO-UHMWPE-7 was 1.41 mg U/gadsorbent after 15 days of adsorption in natural seawater in Daishan. The average capacity of AO-UHMWPE-7 was 1.50 mg U/gadsorbent, which was 18 times greater than that for V after 15 days of adsorption in natural seawater in Daishan. Results indicated that there were many factors affecting the adsorption capacity of uranium. In addition to the character of the adsorbent, including degree of grafting, functional group density, and AO conversion ratio, the marine hydrological conditions, such as temperature, flow velocity, turbidity, etc., are also crucially important for uranium extraction from seawater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.