BACKGROUND The insect olfactory system can recognize odorants for feeding, courtship, oviposition and avoiding natural enemies. Odorant cues from host plants play important roles in insect behaviours. Tobacco ( Nicotiana tabacum ) is the main cultivated host of the oriental tobacco budworm Helicoverpa assult . Volatiles of tobacco plants attract and stimulate oviposition in female moths. However, it is still not known how female H. assulta recognize tobacco volatiles and which odorant compounds are used as oviposition cues. RESULTS We detected 14 volatile compounds emitted from a tobacco plant during vegetative growth, using gas chromatography–mass spectrometry. Electroantennogram tests indicated that eight of the 14 compounds induced responses in female H. assulta. Among these eight volatiles, nonanal greatly increased oviposition preference. Single‐sensillum recording (SSR) results showed that many neurons housed in three types of short basiconic sensilla and four types of long basiconic sensilla responded to nonanal and heptanal as its structural analogue. The responses to nonanal were significantly stronger than those to the other compounds. Nonanal was the main ligand of OR67, an odorant receptor from H. assulta . This was demonstrated using an in vitro Xenopus oocytes expression system that supported the SSR results. CONCLUSION Nonanal is a key signal volatile of tobacco plants that attracts female H. assulta moths to oviposit. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
The tobacco Nicotiana rustica is widely used as a trap crop in the fields of Nicotiana tabacum in China, by attracting oviposition of Helicoverpa assulta females, thus preventing damage to N. tabacum. The mechanism underlying the differential oviposition rates of H. assulta across these two tobacco species, however, is largely unknown. We investigated the mechanism of host plant acceptance of H. assulta with respect to these two tobaccos by using a two-choice behavioral bioassay and GC–MS. Our results indicate that both the leaves and inflorescences of N. rustica attracted significantly more eggs than the corresponding parts of N. tabacum. Extracts of leaves and inflorescences of N. rustica with two different solvents elicited similar oviposition patterns to the corresponding parts of the plants. Chemical analysis by GC–MS revealed that the volatiles of N. rustica contain larger amounts of nicotine than those of N. tabacum at the flowering stage. In addition, γ-terpinolene and β-elemene are found only in extracts of N. rustica. A two-choice bioassay on the individual compounds showed that γ-terpinolene, which is specific to the vegetative stage of N. rustica, and nicotine attracted oviposition by H. assulta. The volatile β-elemene, which is present only in N. rustica, was also attractive. We conclude that the larger amount of nicotine, and the species-specific γ-terpinolene and β-elemene may mediate the different oviposition rates of H. assulta females across N. rustica and N. tabacum.
The olfactory system of insects facilitates their search for host and mates, hence it plays an essential role for insect survival and reproduction. Insects recognize odor substances through olfactory neurons and olfactory genes.Previous studies showed that there are significant sexspecific differences in how insects identify odorant substances, especially sex pheromones. However, whether the sex-specific recognition of odorant substances is caused by differences in the expression of olfaction-related genes between males and females remains unclear. To clarify this
Background: The olfactory system of insects facilitates their search for host and mates, hence it plays an essential role for insect survival and reproduction. Insects recognize odor substances through olfactory neurons and olfactory genes. Previous studies showed that there are significant sex-specific differences in how insects identify odorant substances, especially sex pheromones. However, whether the sex-specific recognition of odorant substances is caused by differences in the expression of olfaction-related genes between males and females remains unclear. Results: In order to clarify this problem, the whole transcriptome sequence of the adult Helicoverpa assulta, an important agricultural pest of tobacco and other Solanaceae plants, was obtained using PacBio sequencing. RNA-seq analysis showed that there were 27 odorant binding proteins (OBPs), 24 chemosensory proteins (CSPs), 4 pheromone-binding proteins (PBPs), 68 odorant receptors (OR) and 2 sensory neuron membrane proteins (SNMPs) genes that were expressed in the antennae of male and female H. assulta. Females had significantly higher expression of GOBP1-like, OBP, OBP3, PBP3 and SNMP1 than males, while males had significantly higher expression of GOBP1, OBP7, OBP13, PBP2 and SNMP2. Conclusions: Our findings improve our understanding of olfactory genes in H. assulta, and can be used to further study pheromone identification, mate search, and sex differences in an insect’s ability to search for hosts. These results improve our understanding of mate search and host differentiation in H. assulta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.