Due to the strong anti-destructive ability, global coverage, and independent infrastructure of the space-based Internet of Things (S-IoT), it is one of the most important ways to achieve a real interconnection of all things. In S-IoT, a single satellite can often achieve thousands of kilometers of coverage and needs to provide data transmission services for massive ground nodes. However, satellite bandwidth is usually low and the uplink and downlink bandwidth is extremely asymmetric. Therefore, exact data collection is not affordable for S-IoT. In this paper, an approximate data collection algorithm is proposed for S-IoT; that is, the sampling-reconstruction (SR) algorithm. Since the uplink bandwidth is very limited, the SR algorithm samples only the sensory data of some nodes and then reconstructs the unacquired data based on the spatiotemporal correlation between the sensory data. In order to obtain higher data collection precision under a certain data collection ratio, the SR algorithm optimizes the sampling node selection by leveraging the curvature characteristics of the sensory data in time and space dimensions. Moreover, the SR algorithm innovatively applies spatiotemporal compressive sensing (ST-CS) technology to accurately reconstruct unacquired sensory data by making full use of the spatiotemporal correlation between the sensory data. We used a real-weather data set to evaluate the performance of the SR algorithm and compared it with two existing representative approximate data collection algorithms. The experimental results show that the SR algorithm is well-suited for S-IoT and can achieve efficient data collection under the condition that the uplink bandwidth is extremely limited.S-IoT is a comprehensive information system that is based on the space-based information network and provides interactions between things and things, people and things, and people and people. S-IoT is an extension and supplement to the terrestrial IoT. It mainly provides data transmission services for nodes in areas that are difficult to cover by terrestrial networks, such as forests, oceans, and deserts, as well as nodes in special areas, such as disaster areas and battlefields.At present, the research on S-IoT has just started, and only a small amount of preliminary research has been carried out on data collection [7], application protocols [8], modulation schemes [9], and authentication protocols [10]. Despite this, S-IoT has attracted extensive attentions from many organizations including Inmarsat, Iridium, Globalstar and Orbcomm, and reports from Northern Sky Research (NSR) also show that in 2020, S-IoT's revenue will likely be as high as $1.7 billion [11].The foundation of S-IoT's service for a variety of applications is data collection. Data collection is the primary operation in S-IoT. Data collection in S-IoT refers to the process of using the space-based information network to collect sensory data from ground nodes and store this in data centers.However, there are huge challenges in S-IoT data collection. Firstly, ...
Random access is one of the most competitive multiple access schemes for future space-based Internet of Things (S-IoT) due to its support for massive connections and grant-free transmission, as well as its ease of implementation. However, firstly, existing random access schemes are highly sensitive to load: once the load exceeds a certain critical value, the throughput will drop sharply due to the increased probability of data collision. Moreover, due to variable satellite coverage and bursty traffic, the network load of S-IoT changes dynamically; therefore, when existing random access schemes are applied directly to the S-IoT environment, the actual throughput is far below the theoretical maximum. Accordingly, this paper proposes an intelligent load control-based random access scheme based on CRDSA++, which is an enhanced version of the contention resolution diversity slotted ALOHA (CRDSA) and extends the CRDSA concept to more than two replicas. The proposed scheme is dubbed load control-based three-replica contention resolution diversity slotted ALOHA (LC-CRDSA3). LC-CRDSA3 actively controls network load. When the load threatens to exceed the critical value, only certain nodes are allowed to send data, and the load is controlled to be near the critical value, thereby effectively improving the throughput. In order to accurately carry out load control, we innovatively propose a maximum likelihood estimation (MLE)-based load estimation algorithm, which estimates the load value of each received frame by making full use of the number of time slots in different states. On this basis, LC-CRDSA3 adopts computational intelligence-based time series forecasting technology to predict the load values of future frames using the historical load values. We evaluated the performance of LC-CRDSA3 through a series of simulation experiments and compared it with CRDSA++. Our experimental results demonstrate that in S-IoT contexts where the load changes dynamically, LC-CRDSA3 can obtain network throughput that is close to the theoretical maximum across a wide load range through accurate load control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.