Recent studies showed that transplantation of mesenchymal stem cells (MSCs) significantly decreased tissue fibrosis; however, little attention has been paid to its efficacy on attenuating skin fibrosis, and the mechanism involved in its effect is poorly understood. In this work, we investigated the effects of MSCs on keloid fibroblasts and extracellular matrix deposition through paracrine actions and whether the antifibrotic properties of MSCs involved transforming growth factor-β (TGF-β)-dependent activation. In vitro experiments showed that conditioned media (CM) from MSCs decreased viability, a-smooth muscle actin expression, and collagen secretion of human keloid fibroblasts. In addition, TGF-β3 secreted by MSCs was expressed at high level under inflammatory environment, and blocking the activity of TGF-β3 apparently antagonized the suppressive activity of MSC CM, which demonstrated that TGF-β3 played a preponderant role in preventing collagen accumulation. In vivo studies showed that MSC CM infusion in a mouse dermal fibrosis model induced a significant decrease in skin fibrosis. Histological examination of tissue sections and immunohistochemical analysis for α-smooth muscle actin revealed that TGF-β3 of CM-mediated therapeutic effects could obviously attenuate matrix production and myofibroblast proliferation and differentiation. These findings suggest that TGF-β3 mediates the attenuating effect of MSCs on both the proliferation and extracellular matrix production of human keloid fibroblasts and decreases skin fibrosis of mouse model, thus providing new understanding and MSC-based therapeutic strategy for cutaneous scar treatment.
Despite extensive researches in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), current pharmacological therapies and respiratory support are still the main methods to treat patients with ALI and ARDS and the effects remain limited. Hence, innovative therapies are needed to decrease the morbidity and mortality. Because of the proven therapeutic effects in other fields, mesenchymal stem cells (MSCs) might be considered as a promising alternative to treat ALI and ARDS. Numerous documents demonstrate that MSCs can exert multiple functions, such as engraftment, differentiation and immunoregulation, but now the key researches are concentrated on paracrine factors secreted by MSCs that can mediate endothelial and epithelial permeability, increase alveolar fluid clearance and other potential mechanisms. This review aimed to review the current researches in terms of the effects of MSCs on ALI and ARDS and to analyse these paracrine factors, as well as to predict the potential directions and challenges of the application in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.