Dysregulation of the Wnt/β-catenin signaling pathway is critically involved in gastric cancer (GC) progression. However, current Wnt pathway inhibitors being studied in preclinical or clinical settings for other cancers such as colorectal and pancreatic cancers are either too cytotoxic or insufficiently efficacious for GC. Thus, we screened new potent targets from β-catenin destruction complex associated with GC progression from clinical samples, and found that scaffolding protein RACK1 deficiency plays a significant role in GC progression, but not APC, AXIN, and GSK3β. Then, we identified its upstream regulator UBE2T which promotes GC progression via hyperactivating the Wnt/β-catenin signaling pathway through the ubiquitination and degradation of RACK1 at the lysine K172, K225, and K257 residues independent of an E3 ligase. Indeed, UBE2T protein level is negatively associated with prognosis in GC patients, suggesting that UBE2T is a promising target for GC therapy. Furthermore, we identified a novel UBE2T inhibitor, M435-1279, and suggested that M435-1279 acts inhibit the Wnt/β-catenin signaling pathway hyperactivation through blocking UBE2T-mediated degradation of RACK1, resulting in suppression of GC progression with lower cytotoxicity in the meantime. Overall, we found that increased UBE2T levels promote GC progression via the ubiquitination of RACK1 and identified a novel potent inhibitor providing a balance between growth inhibition and cytotoxicity as well, which offer a new opportunity for the specific GC patients with aberrant Wnt/β-catenin signaling.
Ubiquitin-conjugating enzymes (E2 enzymes) such as UBE2T target proteins for degradation via the proteasome. Here, we examined the effects of UBE2T on the progression of gastric cancer. UBE2T was highly expressed in gastric tumors and gastric cancer cells. siRNA-mediated suppression of UBE2T inhibited gastric cancer cell proliferation and colony formation by promoting cell cycle arrest at G2/M phase and increasing apoptosis. Suppression of UBE2T also attenuated the invasive and metastatic abilities of gastric cancer cells by altering expression of epithelial-mesenchymal transition (EMT)-related factors. A xenograft model in which nude mice were injected with UBE2T knockdown human gastric cancer cells confirmed that suppression of UBE2T also decreased tumor formation and growth in vivo. Expression levels of CCND1, Phospho-GSK3B, WNT family members, and MYC were all affected by UBE2T knockdown. These results suggest that UBE2T plays a critical role in gastric cancer, and that it may serve as a useful prognostic biomarker and therapeutic target in gastric cancer patients.
Glycolytic pyruvate kinase isoenzyme type M2 (M2-PK) plays a key role in tumor metabolism and energy production. Vascular endothelial growth factor (VEGF) is critical in regulating angiogenesis which is an essential process required for tumor growth and metastasis. These two genes may function in accordance with tumor development. The purpose of this study was to investigate the relationship between the expression of M2-PK and VEGF, and their association with clinicopathological features in patients with advanced gastric cancer. Expression of M2-PK and VEGF were examined in 142 cases of paraffin-embedded tissue blocks from patients with advanced gastric cancer. M2-PK expression was found to strongly correlate with that of VEGF (r = 0.718). In addition, expression of M2-PK and VEGF correlates with tumor size (p = 0.0001, and p = 0.0017, respectively), depth of invasion (p = 0.0024, and p = 0.0261, respectively), and lymph node metastasis (p = 0.036, and p = 0.028, respectively). The high expression levels of M2-PK and VEGF may indicate poor prognosis in patients with advanced gastric cancer.
Bisdemethoxycurcumin (BDMC) is a demethoxy derivative of curcumin. In this study, a human gastric adenocarcinoma xenograft model was generated in vivo using nude mice and BDMC was observed to suppress the growth and activity of tumors, in addition to improving the physical and mental capacity of the mice. An increased number of apoptotic cells, decreased ratio of B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein and increased caspase-3 expression was also observed following treatment with BDMC, indicating that BDMC may promote apoptosis in tumors via mitochondrial modulation. The growth of SGC 7901 gastric cancer cells was inhibited and arrested at G1 phase. Specific indicators of mitochondrial dysfunction, a reduction in adenosine triphosphate generation, the inner mitochondrial membrane potential, augmentation of reactive oxygen species production and cytochrome c were also detected in the mitochondria following treatment with BDMC. These results indicate that BDMC attenuates gastric adenocarcinoma growth by inducing mitochondrial dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.