A representation of the SO(3) group is mapped into a maximally entangled two qubit state according to literatures. To show the evolution of the entangled state, a model is set up on an maximally entangled electron pair, two electrons of which pass independently through a rotating magnetic field. It is found that the evolution path of the entangled state in the SO(3) sphere breaks an odd or even number of times, corresponding to the double connectedness of the SO(3) group. An odd number of breaks leads to an additional π phase to the entangled state, but an even number of breaks does not. A scheme to trace the evolution of the entangled state is proposed by means of entangled photon pairs and Kerr medium, allowing observation of the additional π phase.
We demonstrate an integral gated mode single photon detector at telecom wavelengths. The charge number of an avalanche pulse rather than the peak current is monitored for single-photon detection. The transient spikes in conventional gated mode operation are canceled completely by integrating, which enables one to improve the performance of single photon detector greatly with the same avalanche photodiode. This method has achieved a detection efficiency ( ) of 29.9% at the dark count probability per gate equal to /gate ( /ns) at 1550nm. DE 6
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.