Electron-transfer rates and electronic coupling factors for ferrocene groups attached to gold electrodes via oligo(phenylethynyl) “molecular wire” bridges of variable length and structure are reported. Attachment to gold was achieved via thiol groups at the end of the bridge opposite the ferrocene. Bridge structures were designed to promote strong coupling between gold and ferrocene, thereby promoting rapid electron transport over long distances. The effects of bridge length and of substituents on the phenyl rings in the bridge were addressed. Bridges containing between three and six phenylethynyl units were studied, and a “beta” value of 0.36 Å-1 describing the exponential distance dependence of bridge-mediated electron-transfer rates was obtained. The effect on the rates of adding two propoxy groups onto one of the phenyl rings in the bridge was examined and found to be minimal. The standard electron-transfer rate constant of 350 s-1 obtained for the adsorbate with the longest bridge (six phenylethynyl units, corresponding to an electron-transfer distance of approximately 43 Å) corresponds to an electronic coupling factor between ferrocene and gold of approximately 0.7 cm-1. The extrapolated rate constants at very short distances were nearly the same for the conjugated bridge series and for a related monolayer series in which ferrocene groups were linked to gold via aliphatic bridges. The extrapolated rate constants at short distance also agree with a calculated rate constant for the limiting case of adiabatic electron transfer at an electrode.
Genotyping and gene-expression monitoring is critical to the study of the association between genetics and drug response (pharmacogenomics) and the association of sequence variation with heritable phenotypes. Recently, we developed an entirely electronic method for the detection of DNA hybridization events by the site-specific incorporation of ferrocenyl derivatives into DNA oligonucleotides. To perform rapid and accurate point mutation detection employing this methodology, two types of metal-containing signaling probes with varying redox potentials are required. In this report we describe a new ferrocene-containing phosphoramidite 9 that provides a range of detectable redox potentials. Using automated DNA/RNA synthesis techniques the two ferrocenyl complexes were inserted at various positions along oligonucleotide probes. Thermal stability analysis of these metal-containing DNA oligonucleotides indicates that incorporation of 9 resulted in no destabilization of the duplex. A mixture of oligonucleotides containing compounds 9 and I was analyzed by alternating current voltammetry (ACV) monitored at the 1st harmonic. The data demonstrate that the two ferrocenyl oligonucleotide derivatives can be distinguished electrochemically. A CMS-DNA array was prepared on an array of gold electrodes on a printed circuit board substrate with a self-assembled mixed monolayer, coupled to an electronic detection system. Experiments for the detection of a single-base match utilizing two signaling probes were carried out. The results demonstrate that rapid and accurate detection of a single-base mismatch can be achieved by using these dual-signaling probes on CMS-DNA chips.
A novel platform for the electronic detection of nucleic acids on microarrays is introduced and shown to perform well as a selective detection system for applications in molecular diagnostics. A gold electrode in a printed circuit board is coated with a self-assembled monolayer (SAM) containing DNA capture probes. Unlabeled nucleic acid targets are immobilized on the surface of the SAM through sequence-specific hybridization with the DNA capture probe. A separate signaling probe, containing ferrocene-modified nucleotides and complementary to the target in the region adjoining the capture probe binding site, is held in close proximity to the SAM in a sandwich complex. The SAM allows electron transfer between the immobilized ferrocenes and the gold, while insulating the electrode from soluble redox species, including unbound signaling probes. Here, we demonstrate sequence-specific detection of amplicons after simple dilution of the reaction product into hybridization buffer. In addition, single nucleotide polymorphism discrimination is shown. A genotyping chip for the C282Y single nucleotide polymorphism associated with hereditary hemochromatosis is used to confirm the genotype of six patients' DNA. In addition, a gene expression-monitoring chip is described that surveys five genes that are differentially regulated in the cellular apoptosis response. Finally, custom modification of individual electrodes through sequence-specific hybridization demonstrates the potential of this system for infectious disease diagnostics. The versatility of the electronic detection platform makes it suitable for multiple applications in diagnostics and pharmacogenetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.