BAG2 (BCL2 associated athanogene 2) is associated with cell fate determination in response to various pathological conditions. However, the effects of BAG2 on M. tuberculosis-induced endoplasmic reticulum (ER) stress remain elusive. Herein, we report that M. tuberculosis infection of macrophages triggered ER stress and downregulated BAG2 expression. Overexpression of BAG2 enhanced autophagic flux and activated macroautophagy/autophagy targeted to the ER (reticulophagy). In addition, through increasingly localizing SQSTM1 to the ER in BAG2-overexpressing macrophages, we found that the autophagy receptor protein SQSTM1/p62 (sequestosome 1) is associated with the BAG2-induced reticulophagy. Our data also confirmed that BAG2 could render cells resistant to M. tuberculosis-induced cellular damage, and the anti-apoptotic effects of BAG2 in M. tuberculosis-treated macrophages were partially abolished by the autophagic flux inhibitor bafilomycin A 1 . Furthermore, the dissociation of BECN1 and BCL2 mediated by activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) was responsible for BAG2-activated autophagy. In addition, XBP1 downstream of the ERN1/IRE1 signaling pathway was bound to the Bag2 promoter region and transcriptionally inhibited BAG2 expression. Collectively, these results indicated that BAG2 has anti-apoptotic effects on M. tuberculosisinduced ER stress, which is dependent on the promotion of autophagic flux and the induction of selective autophagy. We revealed a potential host defense mechanism that links BAG2 to ER stress and autophagy during M. tuberculosis infection.
The Golgi apparatus and its resident proteins are utilized and regulated by viruses to facilitate their proliferation. In this study, we investigated Classical swine fever virus (CSFV) proliferation when the function of the Golgi was disturbed. Golgi function was disturbed using chemical inhibitors, namely, brefeldin A (BFA) and golgicide A (GCA), and RNA interfering targets, such as the Golgi-specific BFA-resistance guanine nucleotide exchange factor 1 (GBF1) and Rab2 GTPases. CSFV proliferation was significantly inhibited during RNA replication and viral particle generation after BFA and GCA treatment. CSFV multiplication dynamics were retarded in cells transfected with GBF1 and Rab2 shRNA. Furthermore, CSFV proliferation was promoted by GBF1 and Rab2 overexpression using a lentiviral system. Hence, Golgi function is important for CSFV multiplication, and GBF1 and Rab2 participate in CSFV proliferation. Further studies must investigate Golgi-resident proteins to elucidate the mechanism underlying CSFV replication.
Cardiopulmonary complications are major drivers of mortality caused by the SARS-CoV-2 virus. Interleukin-18, an inflammasome-induced cytokine, has emerged as a novel mediator of cardiopulmonary pathologies but its regulation via SARS-CoV-2 signaling remains unknown. Based on a screening panel, IL-18 was identified amongst 19 cytokines to stratify mortality and hospitalization burden in patients hospitalized with COVID-19. Supporting clinical data, administration of SARS-CoV-2 Spike 1 (S1) glycoprotein or receptor-binding domain (RBD) proteins into human angiotensin-converting enzyme 2 (hACE2) transgenic mice induced cardiac fibrosis and dysfunction associated with higher NF-κB phosphorylation (pNF-κB) and cardiopulmonary-derived IL-18 and NLRP3 expression. IL-18 inhibition via IL-18BP resulted in decreased cardiac pNF-κB and improved cardiac fibrosis and dysfunction in S1- or RBD-exposed hACE2 mice. Through in vivo and in vitro work, both S1 and RBD proteins induced NLRP3 inflammasome and IL-18 expression by inhibiting mitophagy and increasing mitochondrial reactive oxygenation species. Enhancing mitophagy prevented Spike protein-mediated IL-18 expression. Moreover, IL-18 inhibition reduced Spike protein-mediated pNF-κB and EC permeability. Overall, the link between reduced mitophagy and inflammasome activation represents a novel mechanism during COVID-19 pathogenesis and suggests IL-18 and mitophagy as potential therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.