BackgroundRobot-assisted partial nephrectomy (RAPN) has been widely used worldwide, to determine whether RAPN is a safe and effective alternative to open partial nephrectomy (OPN) via the comparison of RANP and OPN.MethodsA comprehensive literature search was performed within the databases including PubMed, Cochrane Library, and Embase updated on 30 September 2015. Summary data with their corresponding 95 % confidence intervals (CIs) were calculated using a random effects or fixed effects model. Heterogeneity and publication bias were also evaluated.ResultsA total of 16 comparative studies including 3024 cases were used for this meta-analysis. There are no significant differences in the demographic characteristic between the two groups, but the age was lower and the tumor size was smaller for the RAPN group. RAPN had a longer operative time and warm ischemia time but which showed less estimated blood loss, hospital stay, and perioperative complications. No differences existed in the margin status, the change of glomerular filtration rate, transfusion rate, and conversion rate between the two groups. There was no significant publication bias.ConclusionsRAPN offered a lower rate of perioperative complications, less estimated blood loss, and shorter length of hospital stay than OPN, suggesting that RAPN can be an effective alternative to OPN. Well-designed prospective randomized controlled trials will be helpful in validating our findings.
Background
The incidence of bladder urothelial carcinoma (UC), a common malignancy of the urinary tract, is approximately three times higher in men than in women. High expression of the mitotic kinase BUB1 is associated with the occurrence and development of several cancers, although the relationship between BUB1 and bladder tumorigenesis remains unclear.
Methods
Using a microarray approach, we found increased BUB1 expression in human BCa. The association between BUB1 and STAT3 phosphorylation was determined through molecular and cell biological methods. We evaluated the impact of pharmacologic inhibition of BUB1 kinase activity on proliferation and BCa progression in vitro and in vivo.
Results
In this study, we found that BUB1 expression was increased in human bladder cancer (BCa). We further identified through a series of molecular and cell biological approaches that BUB1 interacted directly with STAT3 and mediated the phosphorylation of STAT3 at Ser727. In addition, the findings that pharmacologic inhibition of BUB1 kinase activity significantly suppressed BCa cell proliferation and the progression of bladder cancer in vitro and in vivo were further verified. Finally, we found that the BUB1/STAT3 complex promoted the transcription of STAT3 target genes and that depletion of BUB1 and mutation of the BUB1 kinase domain abrogated this transcriptional activity, further highlighting the critical role of kinase activity in the activation of STAT3 target genes. A pharmacological inhibitor of BUB1 (2OH-BNPP1) was able to significantly inhibit the growth of BCa cell xenografts.
Conclusion
This study showed that the BUB1 kinase drives the progression and proliferation of BCa by regulating the transcriptional activation of STAT3 signaling and may be an attractive candidate for therapeutic targeting in BCa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.