Highlights d miR551b-3p translocates to the nucleus and activates STAT3 transcription d Importin-8 (IPO8) is required for the nuclear translocation of miR551b-3p d miR551b-3p activates the expression of OSM family genes for autocrine signaling loop d Inhibition of miR551b-3p disrupts OSM-mediated signaling addiction
The tumor suppressor p53 and the phosphoinositide 3-kinase (PI3K)-Akt pathway have fundamental roles in regulating cell growth, apoptosis and are frequently mutated in cancer. Here, we show that genotoxic stress induces nuclear Akt activation by a p53dependent mechanism that is independent from the canonical membrane-localized PI3K-Akt pathway. Upon genotoxic stress a nuclear p53-PI3,4,5P3 complex is generated in regions devoid of membranes by a nuclear PI3K, and this complex recruits all the kinases required to activate Akt and phosphorylate FOXOs, inhibiting DNA damage-induced apoptosis. Wild-type p53 activates nuclear Akt in an on/off fashion upon stress, whereas mutant p53 stimulates high basal Akt activity, indicating a fundamental difference. The nuclear p53-phosphoinositide signalosome is distinct from the canonical membranelocalized pathway and insensitive to PI3K inhibitors currently in the clinic, underscoring its therapeutic relevance.
SUMMARY
Fragile X-related protein-1 (FXR1) gene is highly amplified in patients with ovarian cancer, and this amplification is associated with increased expression of both
FXR1
mRNA and protein. FXR1 expression directly associates with the survival and proliferation of cancer cells. Surface sensing of translation (SUnSET) assay demonstrates that FXR1 enhances the overall translation in cancer cells. Reverse-phase protein array (RPPA) reveals that cMYC is the key target of FXR1. Mechanistically, FXR1 binds to the AU-rich elements (ARE) present within the 3′ untranslated region (3′UTR) of cMYC and stabilizes its expression. In addition, the RGG domain in FXR1 interacts with eIF4A1 and eIF4E proteins. These two interactions of FXR1 result in the circularization of
cMYC
mRNA and facilitate the recruitment of eukaryotic translation initiation factors to the translation start site. In brief, we uncover a mechanism by which FXR1 promotes cMYC levels in cancer cells.
High-grade serous carcinoma, accounts for up to 70% of all ovarian cases. Furin, a proprotein convertase, is highly expressed in high-grade serous carcinoma of ovarian cancer patients, and its expression is even higher in tumor omentum than in normal omentum, the preferred site of ovarian cancer metastasis. The proteolytic actions of this cellular endoprotease helps the maturation of several important precursors of protein substrates and its levels increase the risk of several cancer. We show that furin activates the IGF1R/STAT3 signaling axis in ovarian cancer cells. Conversely, furin knockdown downregulated IGF1R-β and p-STAT3 (Tyr705) expression. Further, silencing furin reduced tumor cell migration and invasion
in vitro
and tumor growth and metastasis
in vivo
. Collectively, our findings show that furin can be an effective therapeutic target for ovarian cancer prevention or treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.