The accurate diagnosis of various esophageal diseases at different stages is crucial for providing precision therapy planning and improving 5-year survival rate of esophageal cancer patients. Automatic classification of various esophageal diseases in gastroscopic images can assist doctors to improve the diagnosis efficiency and accuracy. The existing deep learning-based classification method can only classify very few categories of esophageal diseases at the same time. Hence, we proposed a novel efficient channel attention deep dense convolutional neural network (ECA-DDCNN), which can classify the esophageal gastroscopic images into four main categories including normal esophagus (NE), precancerous esophageal diseases (PEDs), early esophageal cancer (EEC) and advanced esophageal cancer (AEC), covering six common sub-categories of esophageal diseases and one normal esophagus (seven sub-categories). In total, 20,965 gastroscopic images were collected from 4,077 patients and used to train and test our proposed method. Extensive experiments results have demonstrated convincingly that our proposed ECA-DDCNN outperforms the other state-of-art methods. The classification accuracy (Acc) of our method is 90.63% and the averaged area under curve (AUC) is 0.9877. Compared with other state-of-art methods, our method shows better performance in the classification of various esophageal disease. Particularly for these esophageal diseases with similar mucosal features, our method also achieves higher true positive (TP) rates. In conclusion, our proposed classification method has confirmed its potential ability in a wide variety of esophageal disease diagnosis.
PurposeIn this work, an algorithm named mRBioM was developed for the identification of potential mRNA biomarkers (PmBs) from complete transcriptomic RNA profiles of gastric adenocarcinoma (GA).MethodsmRBioM initially extracts differentially expressed (DE) RNAs (mRNAs, miRNAs, and lncRNAs). Next, mRBioM calculates the total information amount of each DE mRNA based on the coexpression network, including three types of RNAs and the protein-protein interaction network encoded by DE mRNAs. Finally, PmBs were identified according to the variation trend of total information amount of all DE mRNAs. Four PmB-based classifiers without learning and with learning were designed to discriminate the sample types to confirm the reliability of PmBs identified by mRBioM. PmB-based survival analysis was performed. Finally, three other cancer datasets were used to confirm the generalization ability of mRBioM.ResultsmRBioM identified 55 PmBs (41 upregulated and 14 downregulated) related to GA. The list included thirteen PmBs that have been verified as biomarkers or potential therapeutic targets of gastric cancer, and some PmBs were newly identified. Most PmBs were primarily enriched in the pathways closely related to the occurrence and development of gastric cancer. Cancer-related factors without learning achieved sensitivity, specificity, and accuracy of 0.90, 1, and 0.90, respectively, in the classification of the GA and control samples. Average accuracy, sensitivity, and specificity of the three classifiers with machine learning ranged within 0.94–0.98, 0.94–0.97, and 0.97–1, respectively. The prognostic risk score model constructed by 4 PmBs was able to correctly and significantly (∗∗∗p < 0.001) classify 269 GA patients into the high-risk (n = 134) and low-risk (n = 135) groups. GA equivalent classification performance was achieved using the complete transcriptomic RNA profiles of colon adenocarcinoma, lung adenocarcinoma, and hepatocellular carcinoma using PmBs identified by mRBioM.ConclusionsGA-related PmBs have high specificity and sensitivity and strong prognostic risk prediction. MRBioM has also good generalization. These PmBs may have good application prospects for early diagnosis of GA and may help to elucidate the mechanism governing the occurrence and development of GA. Additionally, mRBioM is expected to be applied for the identification of other cancer-related biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.