Replication protein A (RPA) is a DNA single‐strand binding protein essential for DNA replication, recombination and repair. In human cells treated with the topoisomerase inhibitors camptothecin or etoposide (VP‐16), we find that RPA2, the middle‐sized subunit of RPA, becomes rapidly phosphorylated. This response appears to be due to DNA‐dependent protein kinase (DNA‐PK) and to be independent of p53 or the ataxia telangiectasia mutated (ATM) protein. RPA2 phosphorylation in response to camptothecin required ongoing DNA replication. Camptothecin itself partially inhibited DNA synthesis, and this inhibition followed the same kinetics as DNA‐PK activation and RPA2 phosphorylation. DNA‐PK activation and RPA2 phosphorylation were prevented by the cell‐cycle checkpoint abrogator 7‐hydroxystaurosporine (UCN‐01), which markedly potentiates camptothecin cytotoxicity. The DNA‐PK catalytic subunit (DNA‐PKcs) was found to bind RPA which was replaced by the Ku autoantigen upon camptothecin treatment. DNA‐PKcs interacted directly with RPA1 in vitro. We propose that the encounter of a replication fork with a topoisomerase–DNA cleavage complex could lead to a juxtaposition of replication fork‐associated RPA and DNA double‐strand end‐associated DNA‐PK, leading to RPA2 phosphorylation which may signal the presence of DNA damage to an S‐phase checkpoint mechanism.
Keywords: camptothecin/DNA damage/DNA‐dependent protein kinase/RPA2 phosphorylation
Salivary gland tumors (SGT) are a group of highly heterogeneous head and neck malignancies with widely varied clinical outcomes and no standard effective treatments. The CRTC1-MAML2 fusion oncogene, encoded by a recurring chromosomal translocation t(11;19)(q14-21;p12-13), is a frequent genetic alteration found in >50% of mucoepidermoid carcinomas (MEC), the most common malignant SGT. In this study, we aimed to define the role of the CRTC1-MAML2 oncogene in the maintenance of MEC tumor growth and to investigate critical downstream target genes and pathways for therapeutic targeting of MEC. By performing gene expression analyses and functional studies via RNA interference and pharmacological modulation, we determined the importance of the CRTC1-MAML2 fusion gene and its downstream AREG-EGFR signaling in human MEC cancer cell growth and survival in vitro and in vivo using human MEC xenograft models. We found that CRTC1-MAML2 fusion oncogene was required for the growth and survival of fusion-positive human MEC cancer cells in vitro and in vivo. The CRTC1-MAML2 oncoprotein induced the upregulation of the epidermal growth factor receptor (EGFR) ligand Amphiregulin (AREG) by co-activating the transcription factor CREB, and AREG subsequently activated EGFR signaling in an autocrine manner that promoted MEC cell growth and survival. Importantly, CRTC1-MAML2-positive MEC cells were highly sensitive to EGFR signaling inhibition. Therefore, our study revealed that aberrantly activated AREG-EGFR signaling is required for CRTC1-MAML2-positive MEC cell growth and survival, suggesting that EGFR-targeted therapies will benefit patients with advanced, unresectable CRTC1-MAML2-positive MEC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.