We report on near-GeV electron beam generation from an all-optical cascaded laser wakefield accelerator (LWFA). Electron injection and acceleration are successfully separated and controlled in different LWFA stages by employing two gas cells filled with a He/O2 mixture and pure He gas, respectively. Electrons with a Maxwellian spectrum, generated from the first LWFA assisted by ionization-induced injection, were seeded into the second LWFA with a 3-mm-thick gas cell and accelerated to be a 0.8-GeV quasimonoenergetic electron beam, corresponding to an acceleration gradient of 187 GV/m. The demonstrated scheme paves the way towards the multi-GeV laser accelerators.
Laser wakefield acceleration of electrons well beyond 1 GeV and optical guiding of ultraintense laser pulses of peak powers up to 160 TW over a 4-cm long ablative capillary discharge plasma channel were experimentally demonstrated. Electron beams, with energies up to 1.8 GeV, were generated by using the 130 TW, 55 fs driving laser pulses. A comparison of oxygen-containing acrylic resin (C:O:H = 4:2:7) capillary and no oxygen-containing polyethylene (C:O:H = 1:0:2) capillary measurements suggests that the injection of electron into the laser wakefield is assisted by the ionization of oxygen K-shell electrons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.