A novel RNA-triple-helix hydrogel for treatment of triple negative breast cancers (TNBCs) by incorporating RNA-triple-helix and siRNA duplexes of CXCR4 into the same RNA nanoparticles was developed, without the synthetic polycationic reagents.
Intelligent optimization algorithms have advantages in dealing with complex nonlinear problems accompanied by good flexibility and adaptability. In this paper, the FCBF (Fast Correlation-Based Feature selection) method is used to filter irrelevant and redundant features in order to improve the quality of cancer classification. Then, we perform classification based on SVM (Support Vector Machine) optimized by PSO (Particle Swarm Optimization) combined with ABC (Artificial Bee Colony) approaches, which is represented as PA-SVM. The proposed PA-SVM method is applied to nine cancer datasets, including five datasets of outcome prediction and a protein dataset of ovarian cancer. By comparison with other classification methods, the results demonstrate the effectiveness and the robustness of the proposed PA-SVM method in handling various types of data for cancer classification.
Ensemble learning combines multiple learners to perform combinatorial learning, which has advantages of good flexibility and higher generalization performance. To achieve higher quality cancer classification, in this study, the fast correlation-based feature selection (FCBF) method was used to preprocess the data to eliminate irrelevant and redundant features. Then, the classification was carried out in the stacking ensemble learner. A library for support vector machine (LIBSVM),
K
-nearest neighbor (KNN), decision tree C4.5 (C4.5), and random forest (RF) were used as the primary learners of the stacking ensemble. Given the imbalanced characteristics of cancer gene expression data, the embedding cost-sensitive naive Bayes was used as the metalearner of the stacking ensemble, which was represented as CSNB stacking. The proposed CSNB stacking method was applied to nine cancer datasets to further verify the classification performance of the model. Compared with other classification methods, such as single classifier algorithms and ensemble algorithms, the experimental results showed the effectiveness and robustness of the proposed method in processing different types of cancer data. This method may therefore help guide cancer diagnosis and research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.