The temporomandibular joint (TMJ) is essential for jaw function, but the mechanisms regulating its development remain poorly understood. Because Indian hedgehog (Ihh) regulates trunk and limb skeletogenesis, we studied its possible roles in TMJ development. In wild-type mouse embryos, Ihh expression was already strong in condylar cartilage by embryonic day (E) 15.5, and expression of Ihh receptors and effector genes (Gli1, Gli2, Gli3, and PTHrP) indicated that Ihh range of action normally reached apical condylar tissue layers, including polymorphic chondroprogenitor layer and articular disc primordia. In Ihh ؊/؊ embryos, TMJ development was severely compromised. Condylar cartilage growth, polymorphic cell proliferation, and PTHrP expression were all inhibited, and growth plate organization and chondrocyte gene expression patterns were abnormal. These severe defects were partially corrected in double Ihh ؊/؊ /Gli3؊/؊ mutants, signifying that Ihh action is normally modulated and delimited by Gli3 and Gli3 R in particular. Both single and double mutants, however, failed to form an articular disc primordium, normally appreciable as an independent condensation between condylar apex and neighboring developing temporal bone in wild-type. This failure persisted at later stages, leading to complete absence of a normal functional disc and lubricin-expressing joint cavities. In summary, Ihh is very important for TMJ development, where it appears to regulate growth and elongation events, condylar cartilage phenotype, and chondroprogenitor cell function. Absence of articular disc and joint cavities in single and double mutants points to irreplaceable Ihh roles in formation of those critical TMJ components. Developmental Dynamics 236:426 -434, 2007.
The Wnt antagonist Frzb-1 is expressed during limb skeletogenesis, but its roles in this complex multistep process are not fully understood. To address this issue, we determined Frzb-1 gene expression patterns during chick long bone development and carried out gain- and loss-of-function studies by misexpression of Frzb-1, Wnt-8 (a known Frzb-1 target), or different forms of the intracellular Wnt mediator LEF-1 in developing limbs and cultured chondrocytes. Frzb-1 expression was quite strong in mesenchymal prechondrogenic condensations and then characterized epiphyseal articular chondrocytes and prehypertrophic chondrocytes in growth plates. Virally driven Frzb-1 misexpression caused shortening of skeletal elements, joint fusion, and delayed chondrocyte maturation, with consequent inhibition of matrix mineralization, metalloprotease expression, and marrow/bone formation. In good agreement, misexpression of Frzb-1 or a dominant-negative form of LEF-1 in cultured chondrocytes maintained the cells at an immature stage. Instead, misexpression of Wnt-8 or a constitutively active LEF-1 strongly promoted chondrocyte maturation, hypertrophy, and calcification. Immunostaining revealed that the distribution of endogenous Wnt mediator beta-catenin changes dramatically in vivo and in vitro, from largely cytoplasmic in immature proliferating and prehypertrophic chondrocytes to nuclear in hypertrophic mineralizing chondrocytes. Misexpression of Frzb-1 prevented beta-catenin nuclear relocalization in chondrocytes in vivo or in vitro. The data demonstrate that Frzb-1 exerts a strong influence on limb skeletogenesis and is a powerful and direct modulator of chondrocyte maturation, phenotype, and function. Phases of skeletogenesis, such as terminal chondrocyte maturation and joint formation, appear to be particularly dependent on Wnt signaling and thus very sensitive to Frzb-1 antagonistic action.
The von Hippel-Lindau tumor suppressor pVHL regulates the stability of hypoxia-inducible factors (HIF)-1 and -2, oxygen-sensitive basic helix-loop-helix transcription factors, which mediate the hypoxic induction of angiogenic growth factors such as vascular endothelial growth factor. Loss of pVHL function results in constitutive activation of HIF-1 and HIF-2 and is associated with the development of highly vascularized tumors in multiple organs. We have used a conditional gene-targeting approach to investigate the relative contributions of HIF-1 and HIF-2 to VHL-associated vascular tumorigenesis in a mouse model of liver hemangiomas. Here we demonstrate genetically that conditional inactivation of HIF-2a suppressed the development of VHL-associated liver hemangiomas and that angiogenic gene expression in hepatocytes is predominantly regulated by HIF-2 and not by HIF-1. These findings suggest that HIF-2 is the dominant HIF in the pathogenesis of VHL-associated vascular tumors and that pharmacologic targeting of HIF-2 may be an effective strategy for their treatment.
Odontogenesis involves multiple events, including tissue-tissue interactions, cell proliferation, and cell differentiation, but the underlying mechanisms of regulation are far from clear. Because Fisp12/CTGF is a signaling protein involved in similar events in other systems, we asked whether it is expressed in developing tooth germs and what roles it may have. Indeed, Fisp12/CTGF transcripts were first expressed by dental laminas, invaginating epithelium, and condensing mesenchyme at the bud stage, and then became abundant in enamel knot and preameloblasts. Fisp12/CTGF was present not only in inner dental epithelium but also in stratum intermedium and underlying dental mesenchyme. Fisp12/CTGF expression decreased markedly in secreting ameloblasts. Tissue reconstitution experiments showed that Fisp12/CTGF expression in dental epithelium required interaction with mesenchyme but was maintained by treatment of epithelium with transforming growth factor-1, a factor regulating Fisp12/CTGF expression in other systems, or with bone morphogenetic protein-2. Loss-of-function studies using CTGF neutralizing antibodies revealed that interference with endogenous factor action in tooth germ explants led to a severe inhibition of proliferation in both epithelium and mesenchyme and a marked delay in cytodifferentiation of ameloblasts and odontoblasts. Treatment of dental epithelial and mesenchymal cells in culture with recombinant CTGF stimulated cell proliferation, whereas treatment with neutralizing antibodies inhibited it. The data demonstrate for the first time that Fisp12/CTGF is expressed during odontogenesis. Expression is confined to specific sites and times, is regulated by epithelialmesenchymal interactions and critical soluble factors, and appears to be needed for proliferation and differentiation along both ameloblast and odontoblast cell lineages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.