Plant diseases such as drought stress and pest diseases significantly impact crops’ growth and yield levels. By detecting the surface characteristics of plant leaves, we can judge the growth state of plants and whether diseases occur. Traditional manual detection methods are limited by the professional knowledge and practical experience of operators. In recent years, a detection method based on deep learning has been applied to improve detection accuracy and reduce detection time. In this paper, we propose a disease detection method using a convolutional neural network (CNN) with multi-scale feature fusion for maize leaf disease detection. Based on the one-stage plant disease network YoLov5s, the coordinate attention (CA) attention module is added, along with a key feature weight to enhance the effective information of the feature map, and the spatial pyramid pooling (SSP) module is modified by data augmentation to reduce the loss of feature information. Three experiments are conducted under complex conditions such as overlapping occlusion, sparse distribution of detection targets, and similar textures and backgrounds of disease areas. The experimental results show that the average accuracy of the MFF-CNN is higher than that of currently used methods such as YoLov5s, Faster RCNN, CenterNet, and DETR, and the detection time is also reduced. The proposed method provides a feasible solution not only for the diagnosis of maize leaf diseases, but also for the detection of other plant diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.