Salt stress is one of the factors that limits rice production, and an important task for researchers is to cultivate rice with strong salt tolerance. In this study, 211 rice accessions were used to determine salt tolerance germinability (STG) indices and conduct a genome-wide association study (GWAS) using 36,727 SNPs. The relative germination energy (RGE), relative germination index (RGI), relative vigor index (RVI), relative mean germination time (RMGT), relative shoot length (RSL), and relative root length (RRL) were used to determine the STG indices in rice. A total of 43 QTLs, including 15 for the RGE, 6 for the RGI, 7 for the RVI, 3 for the RMGT, 1 for the RSL, and 11 for the RRL, were identified on nine chromosome regions under 60 and 100 mM NaCl conditions. For these STG-related QTLs, 18 QTLs were co-localized with previous studies, and some characterized salt-tolerance genes, such as OsCOIN, OsHsp17.0, and OsDREB2A, are located in these QTL candidates. Among the 25 novel QTLs, qRGE60-1-2 co-localized with qRGI60-1-1 on chromosome 1, and qRGE60-3-1 and qRVI60-3-1 co-localized on chromosome 3. According to the RNA-seq database, 16 genes, including nine for qRGE60-1-2 (qRGI60-1-1) and seven for qRGE60-3-1 (qRVI60-3-1), were found to show significant differences in their expression levels between the control and salt treatments. Furthermore, the expression patterns of these differentially expressed genes were analyzed, and nine genes (five for qRGE60-1-2 and four for qRGE60-3-1) were highly expressed in embryos at the germination stage. Haplotype analysis of these nine genes showed that the rice varieties with elite haplotypes in the LOC_Os03g13560, LOC_Os03g13840, and LOC_Os03g14180 genes had high STG. GWAS validated the known genes underlying salt tolerance and identified novel loci that could enrich the current gene pool related to salt tolerance. The resources with high STG and significant loci identified in this study are potentially useful in breeding for salt tolerance.
Rice is frequently affected by cold weather at high altitudes in temperate and subtropical regions. With the popularity of direct seeding, a better understanding of the genetic mechanisms regulating cold tolerance will enable breeders to develop varieties with strong low temperature germinability (LTG). In this study, six indices including low temperature germination percentage (LTGP), relative germination percentage (RGP), relative plumule length (RPL), plumule length after 6-day recovery (PLR), plumule length recovery rate (PLRR) and recovery ability of plumule length after cold stress (RAPL) were measured to assess LTG, and carried out a genome-wide association study (GWAS) to identify QTL and candidate genes related to LTG by using a natural population comprising 211 rice accessions. A total of 18 QTL including two for LTGP, three for RGP, five for PLR, four for PLRR, two for RPL and two for RAPL were uncovered on 12 chromosome regions located in chromosome 1, 2, 4, 5, 6, 9, 10 and 12. On chromosome 2, qLTGP2 and qRGP2 were co-localized at 3.3 Mb, and qPLR2 and qPLRR2 were co-localized at 5.5 Mb; qLTGP5, qPLR5 and qPLR5 were co-localized at 27.8 Mb on chromosome 5; qPLR6 and qPLRR6 were co-localized at 5.7 Mb on chromosome 6; and qPLR12 and qPLRR12 were co-localized at 23.5 Mb on chromosome 12. These results indicated that some LTG-related traits may share the same genetic pathway. For the 18 LTG-related QTL, seven QTL (qLTGP2, qRGP2, qPLR2, qPLRR2, qLTGP5, qPLR5 and qPLR5) were reported for the first time. According to candidate gene analysis, fourteen genes from five QTL (qLTGP2, qPLR2, qLTGP5, qRAPL10 and qPLR12) were considered as candidate genes and will be further functionally validated in subsequent experiments. QTL with superior candidate genes identified in this study will be useful in improving cold tolerance in rice cultivars. The rice varieties with strong LTG identified in this study will enrich the resources of rice cultivation project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.