The Internet of Things (IoT), inspired by the tremendous growth of connected heterogeneous devices, has pioneered the notion of smart city. Various components, i.e., smart transportation, smart community, smart healthcare, smart grid, etc. which are integrated within smart city architecture aims to enrich the quality of life (QoL) of urban citizens. However, real-time processing requirements and exponential data growth withhold smart city realization. Therefore, herein we propose a Big Data analytics (BDA)-embedded experimental architecture for smart cities. Two major aspects are served by the BDA-embedded smart city. Firstly, it facilitates exploitation of urban Big Data (UBD) in planning, designing, and maintaining smart cities. Secondly, it occupies BDA to manage and process voluminous UBD to enhance the quality of urban services. Three tiers of the proposed architecture are liable for data aggregation, real-time data management, and service provisioning. Moreover, offline and online data processing tasks are further expedited by integrating data normalizing and data filtering techniques to the proposed work. By analyzing authenticated datasets, we obtained the threshold values required for urban planning and city operation management. Performance metrics in terms of online and offline data processing for the proposed dual-node Hadoop cluster is obtained using aforementioned authentic datasets. Throughput and processing time analysis performed with regard to existing works guarantee the performance superiority of the proposed work. Hence, we can claim the applicability and reliability of implementing proposed BDA-embedded smart city architecture in the real world.
This paper proposes a novel energy-conserving multihop routing protocol to maximize network lifetime and consume the battery in a distributed manner during route discovery in energy-constrained Bluetooth Low Energy ad hoc networks. Furthermore, a flooding avoidance approach is adopted by the proposed scheme to minimize the number of route request packets flooded. In addition, the proposed scheme maximizes network lifetime by using residual battery and RSSI as a route metric. The simulation results confirm that our proposed scheme has a surpassing performance with regard to network lifetime, evenly distributed battery consumption, and route discovery latency compared with the traditional on-demand routing protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.