Localization is one of the essential process in robotics, as it plays an important role in autonomous navigation, simultaneous localization, and mapping for mobile robots. As robots perform large-scale and long-term operations, identifying the same locations in a changing environment has become an important problem. In this paper, we describe a robust visual localization system under severe appearance changes. First, a robust feature extraction method based on a deep variational autoencoder is described to calculate the similarity between images. Then, a global sequence alignment is proposed to find the actual trajectory of the robot. To align sequences, local fragments are detected from the similarity matrix and connected using a rectangle chaining algorithm considering the robot’s motion constraint. Since the chained fragments provide reliable clues to find the global path, false matches on featureless structures or partial failures during the alignment could be recovered and perform accurate robot localization in changing environments. The presented experimental results demonstrated the benefits of the proposed method, which outperformed existing algorithms in long-term conditions.
For the logistics environment, multi-UAV algorithms have been studied for the purpose of order picking in warehouses. However, modern order picking adopts static order picking methods that struggle to cope with increasing volumes of goods because the algorithms receive orders for a certain period of time and pick only those orders. In this paper, by using the modified interventionist method and dynamic path planning, we aim to assign orders received in real-time to multi-UAVs in the warehouse, and to determine the order picking sequence and path of each UAV. The halting and correcting strategy is proposed to assign orders to UAVs in consideration of the similarity between the UAV’s picking list and the orders. A UAV starts picking orders by using the ant colony optimization algorithm for the orders initially assigned. For additional orders, the UAV modifies the picking sequence and UAV’s path in real time by using the k-opt-based algorithm. We evaluated the proposed method by changing the parameters in a simulation of a general warehouse layout. The results show that the proposed method not only reduces completion time compared to the previous algorithm but also reduces UAV’s travel distance and the collapsed time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.