The strip filling mining method can solve the problems related to mining under structures, under aquifers, and under infrastructure (3U coal seams), while the reasonable selection of the mining and filling sequence still requires further investigation. The current study was conducted to investigate the stress and surface subsidence of a filling body (or coal pillar) under two filling sequences through theoretical analysis, similar simulation tests, and numerical simulations. To achieve optimal filling materials for the Liudong Coal Mine, a low-strength similar paste filling material composed of fly ash, gypsum, and sand was developed. The relationships between the strength and the cement ratio and between the strength and the sand-binder ratio were discussed. Similar simulation tests showed that mining scheme 1 (mining before filling) could lead to the formation of an isolated island coal pillar in the mining process, mining scheme 2 (filling before mining) had less influence on surface subsidence, and the stress on the filling body was smaller for scheme 2 than for scheme 1. The distributions of the stress and plastic zone in the two different mining and filling sequences were obtained through numerical simulations. The method of first filling and then mining could greatly reduce the stress concentration and plastic zone during the mining process. In summary, mining scheme 2 (filling before mining) can avoid the formation of isolated island coal pillars in the process of mining, and without considering other factors, scheme 2 should be adopted as much as possible.
The intrinsic cell wall mechanical properties of Baker's yeast (Saccharomyces cerevisiae) cells were determined. Force-deformation data from compression of individual cells up to failure were recorded, and these data were fitted by an analytical model to extract the elastic modulus of the cell wall and the initial stretch ratio of the cell. The cell wall was assumed to be homogeneous, isotropic, and incompressible. A linear elastic constitutive equation was assumed based on Hencky strains to accommodate the large stretches of the cell wall. Because of the high compression speed, water loss during compression could be assumed to be negligible. It was then possible to treat the initial stretch ratio and elastic modulus as adjustable parameters within the analytical model. As the experimental data fitted numerical simulations well up to the point of cell rupture, it was also possible to extract cell wall failure criteria. The mean cell wall properties for resuspended dried Baker's yeast were as follows: elastic modulus 185 ± 15 MPa, initial stretch ratio 1.039 ± 0.006, circumferential stress at failure 115 ± 5 MPa, circumferential strain at failure 0.46 ± 0.03, and strain energy per unit volume at failure 30 ± 3 MPa. Data on yeast cells obtained by this method and model should be useful in the design and optimization of cell disruption equipment for yeast cell processing.
BackgroundThe present study aimed to develop an in vitro model for stain removal from natural enamel for the assessment and comparison of oral hygiene products.MethodsBovine teeth (n = 8 per group) were ground/polished to provide flat enamel specimens and ferric-tannate deposits were precipitated onto the enamel surfaces. The ferric-tannate stained enamel specimens were brushed using an in vitro tooth-brushing simulator with slurries containing commercially available toothpaste products, dental abrasive particles, and sodium tripolyphosphate (STP) solutions of different concentrations. The colour of the enamel surfaces was measured using a spectrophotometer before and after stain application as well as after the brushing treatments.ResultsDifferences in stain removal efficacy were found between the toothpastes categorised as whitening and non-whitening comprising of different types of dental abrasives (hydrated silica and alumina). A mean value of 27% for stain removal was detected for the three non-whitening toothpastes and 59% of stain removal was detected for the three whitening toothpastes after 1000 strokes. Compared with the slurry with Zeodent 113 abrasive alone, the addition of STP provided better performance for stain removal under the same brushing conditions (mean value of 62% for Zeodent 113 abrasive alone and 72% with the addition of 5% (w/w) STP after 1000 strokes). No difference was evident between the STP concentration of 5% (w/w) and 10% (w/w).ConclusionsThe ferric-tannate/bovine enamel model reported here provides good stain retention, is rapidly and easily prepared, and is shown to be progressively and reproducibly sensitive to toothbrushing using different toothpastes and surfactant/chelating agent solutions. Importantly, it provides good discrimination between various oral hygiene products.The stain removal assay reported here has considerable potential to enable comparative assessments of different toothpaste types in terms of their cleaning capabilities.
Cave backfill grouting implies grouting of the caving rock mass prior to it being compacted. The filling materials strengthen the caving rock and support the overlying strata to achieve the purpose of slowing down the surface subsidence. The broken roof will fail and collapse during mining operations performed without appropriate supporting measures being taken. It is difficult to perform continuous backfill mining on the working face of such roofs using the existing mining technology. In order to solve the above problems, fly ash and mine water are considered as filling materials, and flow characteristics of fly-ash slurry are investigated through laboratory experiments and theoretical analyses. Laws governing the diffusion of fly-ash slurry in the void of caving rock masses and in the void between a caving rock mass and a basic roof are obtained and verified. Based on the results obtained from the above analyses and actual conditions at the Zhaoguan coal mine, Shandong Province, China, a cave backfill grouting system of the hauling pipeline is developed and successfully tested at the 1703 working face in the Zhaoguan coal mine. The results demonstrate that a filling rate of 43.46% is achieved, and the surface subsidence coefficient of the grouting process is found to be 0.475. Compared to the total caving method, the proposed system is found to achieve a reduction rate of 40.63%. This effectively helps in lowering the value of the surface subsidence coefficient. Fly ash and mine water, considered as primary materials in this study, also play a significant role in improving the air quality and water environment.
Filling mining is an effective way to settle the dilemma of “Three Down and One Above” in coal mining. Fly ash and coal gangue can be used as filling materials with significant social, economic, and environmental benefits. Using coarse fly ash base as cementing material and coal gangue as aggregate, orthogonal experiment of filling paste was conducted in this study. The range analysis was performed for the strength and transportation requirements of filling paste, and the optimum proportion was determined by the comprehensive balance method. In order to verify the filling effect, a dynamic filling simulation device was designed, and a comparative simulation test of caving mining and dynamic filling mining was carried out. Results show that the filling paste with fly ash and coal gangue as the main component can meet the requirements of filling design and application. This research provides a reference for the material selection and proportion design of paste filling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.