The accumulation of fluoride in tea leaves from various cultivars exhibits significant differences. However, the molecular basis and mechanism remain largely unknown. Here, we reported that two genes of CsFEX (fluoride export genes in Camellia sinensis), CsFEX1 and CsFEX2, transport fluoride out of cells, alleviate the cellular fluoride toxin, and rescue the yeast mutant (FEX1ΔFEX2Δ) and Arabidopsis mutant (fex), as their efflux activities are coupled with proton gradients. Further analysis found that CsFEX1 and CsFEX2 localize to the plasma membrane both in yeast and Arabidopsis cells. CsFEX2 is more effective to reduce fluoride toxicity in yeast and Arabidopsis compared with CsFEX1 even at low pH. CsFEX2 induced by fluoride treatment is around tenfold higher in a low-fluoride cultivar (Yunkang 10) than that in a high-fluoride cultivar (Pingyang Tezaocha), suggesting that CsFEX2 possibly plays a critical role in reducing fluoride accumulation in tea leaves.
Grain size is determined by the size and number of cells in the grain. The regulation of grain size is crucial for improving crop yield; however, the genes and molecular mechanisms that control grain size remain elusive. Here, we report that a member of the detoxification efflux carrier /Multidrug and Toxic Compound Extrusion (DTX/MATE) family transporters, BIG RICE GRAIN 1 (BIRG1), negatively influences grain size in rice (Oryza sativa L.). BIRG1 is highly expressed in reproductive organs and roots. In birg1 grain, the outer parenchyma layer cells of spikelet hulls are larger than in wild‐type (WT) grains, but the cell number is unaltered. When expressed in Xenopus laevis oocytes, BIRG1 exhibits chloride efflux activity. Consistent with this role of BIRG1, the birg1 mutant shows reduced tolerance to salt stress at a toxic chloride level. Moreover, grains from birg1 plants contain a higher level of chloride than those of WT plants when grown under normal paddy field conditions, and the roots of birg1 accumulate more chloride than those of WT under saline conditions. Collectively, the data suggest that BIRG1 in rice functions as a chloride efflux transporter that is involved in mediating grain size and salt tolerance by controlling chloride homeostasis.
Nitrogen (N) and potassium (K) are essential macronutrients for plants. Sufficient N and K uptake from the environment is required for successful growth and development. However, how N and K influence each other at the molecular level in plants is largely unknown. In this study, we found loss-of-function mutation in SLAH3 (SLAC1 HOMOLOGUE 3), encoding a NO3− efflux channel in Arabidopsis thaliana, enhanced tolerance to high KNO3 concentrations. Surprisingly, slah3 mutants were less sensitive to high K+ but not NO3−. Addition of NO3− led to reduced phenotypic difference between wild-type and slah3 plants, suggesting SLAH3 orchestrates NO3−-K+ balance. Non-invasive Micro-test Technology (NMT) analysis revealed reduced NO3− efflux and enhanced K+ efflux in slah3 mutants, demonstrating that SLAH3-mediated NO3− transport and SLAH3-affected K+ flux are critical in response to high K + . Further investigation showed that two K+ efflux channels, GORK (GATED OUTWARDLY-RECTIFYING K+ CHANNEL) and SKOR (STELAR K+ OUTWARD RECTIFIER), interacted with SLAH3 and played key roles in high K+ response. The gork and skor mutants were slightly more sensitive to high K+ conditions. Less depolarization occurred in slah3 mutants and enhanced depolarization was observed in gork and skor mutants upon K+ treatment, suggesting NO3−/K+ efflux-mediated membrane potential regulation is involved in high K+ response. Electrophysiological results showed that SLAH3 partially inhibited the activities of GORK and SKOR in Xenopus laevis oocytes. This study revealed that the anion channel SLAH3 interacts with the potassium channels GORK and SKOR to modulate membrane potential by coordinating N–K balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.