Summary
This article concentrates on an adaptive finite‐time fault‐tolerant fuzzy tracking control problem for nonstrict feedback nonlinear systems with input quantization and full‐state constraints. By utilizing the fuzzy logic systems and less adjustable parameters method, the unknown nonlinear functions are addressed in each step process. In addition, a dynamic surface control technique combined with fuzzy control is introduced to tackle the variable separation problem. The problem for the effect of quantization and unlimited number of actuator faults is tackled by a damping term with smooth function in the intermediate control law. Finite‐time stability is achieved by combining barrier Lyapunov functions and backstepping method. The finite‐time controller is designed such that all the responses of the systems are semiglobal practical finite‐time stable and ensured to remain in the predefined compact sets while tracking error converges to a small neighborhood of the origin in finite time. Finally, simulation examples are utilized to testify the validity of the investigated strategy.
This paper investigates the event-based fault detection (FD) problem for a category of discrete-time interval type-2 fuzzy systems with measurement outliers. For the sake of decreasing the utilization of limited communication bandwidth, an event-based mechanism is introduced. Based on the saturation function technique, a novel event-based FD observer is first designed to reduce the influence of outliers in the dynamic systems. Then, on the basis of Lyapunov stability theory, sufficient conditions are provided to ensure that the error system satisfies the H∞ performance and the H∞ fault performance in different cases, respectively. In contrast to the existing event-based FD results, the false alarm, which is induced by measurement outliers, can be effectively avoided by the designed FD observer with saturation function. Lastly, some simulation results are given to verify the effectiveness of the method presented in this paper.
This paper presents an event-triggered consensus control protocol for a class of multi-agent systems with actuator faults, sensor faults and unknown disturbances. The adaptive neural network compensation control method is introduced to solve the problem of sensor faults. The event-triggered mechanism is developed to reduce the communication burden. In the control design process, the radial basis function neural networks are used to approximate the unknown nonlinear functions, and a nonlinear disturbance observer is used to eliminate the effect of unknown external disturbances. Furthermore, based on the graph theory and Lyapunov stability theory, it is further shown that the consensus tracking errors are semi-globally uniformly ultimately bounded. Finally, the simulation example illustrates the effectiveness of the designed control protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.