[1] Antigorite, the high-temperature (HT) form of serpentinite, is believed to play a critical role in various geological processes of subduction zones. We have measured P-and Swave velocities (V p and V s ), anisotropy and shear-wave splitting of 17 serpentinite samples containing >90% antigorite at pressures up to 650 MPa. The new results, combined with data for low-temperature (LT) lizardite and/or chrysolite, reveal distinct effects of LT and HT serpentinization on the seismic properties of mantle rocks. At 600 MPa, V p = 5.10 and 6.68 km/s, V s = 2.32 and 3.67 km/s, and V p /V s = 2.15 and 1.81 for pure LT and HT serpentinites, respectively. Above the crack-closure pressure (~150 MPa), the velocity ratio of antigorite serpentinites displays little dependence on pressure or temperature. Serpentine contents within subduction zones and forearc mantle wedges where temperature is >300 C should be at least twice that of previous estimates based on LT serpentinization. The presence of seismic anisotropy, high-pressure fluids, or partial melt is also needed to interpret HT serpentinized mantle with V p < 6.68 km/s, V s < 3.67 km/s, and V p /V s > 1.81. The intrinsic anisotropy of the serpentinites (3.8-16.9% with an average value of 10.5% for V p , and 3.6-18.3% with an average value of 10.4% for V s ) is caused by dislocation creepinduced lattice-preferred orientation of antigorite. Three distinct patterns of seismic anisotropy correspond to three types of antigorite fabrics (S-, L-, and LS-tectonites) formed by three categories of strain geometry (i.e., coaxial flattening, coaxial constriction, and simple shear), respectively. Our results are thought to provide a new explanation for various anisotropic patterns of subduction systems observed worldwide.Citation: Ji, S., A. Li, Q. Wang, C. Long, H. Wang, D. Marcotte, and M. Salisbury (2013), Seismic velocities, anisotropy, and shear-wave splitting of antigorite serpentinites and tectonic implications for subduction zones,
A large portion of the middle to lower crust beneath the continents and oceanic island arcs consists of amphibolites dominated by hornblende and plagioclase. We have measured P and S wave velocities (Vp and Vs) and anisotropy of 17 amphibole‐rich rock samples containing 34–80 vol % amphibole at hydrostatic pressures (P) up to 650 MPa. Combined petrophysical and geochemical analyses provide a new calibration for mean density, average major element contents, mean Vp‐P and Vs‐P coefficients, intrinsic Vp and Vs anisotropy, Poisson's ratios, the logarithmic ratio Rs/p, and elastic moduli of amphibole‐rich rocks. The Vp values decrease with increasing SiO2 and Na2O + K2O contents but increase with increasing MgO and CaO contents. The maximum (≤0.38–0.40 km/s) and minimum S wave birefringence values occur generally in the propagation direction parallel to Y and normal to foliation, respectively. Amphibole plays a critical role in the formation of seismic anisotropy, whereas the presence of plagioclase, quartz, pyroxene, and garnet diminishes the anisotropy induced by amphibole crystallographic preferred orientations (CPOs). The CPO variations cause different anisotropy patterns illustrated in the Flinn diagram of Vp(X)/Vp(Y)‐Vp(Y)/Vp(Z) plots. The results make it possible to distinguish, in terms of seismic properties, the amphibolites from other categories of lithology such as granite‐granodiorite, diorite, gabbro‐diabase, felsic gneiss, mafic gneiss, eclogite, and peridotite within the Earth's crust. Hence, amphibole, aligned by dislocation creep, anisotropic growth, or rigid‐body rotation, is the most important contributor to the seismic anisotropy of the deep crust beneath the continents and oceanic island arcs, which contains rather little phyllosilicates such as mica or chlorite.
[1] A detailed study of seismic properties (P and S wave velocities, hysteresis, anisotropy and shear wave splitting) has been carried out on a unique suite of deep borehole core samples from the Chinese Continental Scientific Drilling (CCSD) project, which penetrated 5158 m into the Sulu ultrahigh-pressure (UHP) metamorphic terrane (China). Seismic velocities of the deep core samples are more and less sensitive to pressure in the low pressure (<200-300 MPa) nonlinear and high pressure (>200-300 MPa) linear regimes, respectively, than samples from the surface. The comparison suggests that the high pressure data from the core samples are much more reliable for extrapolation to deeper crust than the data from surface analogs that have been subjected to long histories of weathering and alteration along intergranular and transgranular cracks. The significant increases in the pressure sensitivity of seismic velocities for the core samples in the nonlinear regime indicate that drilling-induced and stress-relief microcracks with small aspect ratios are fresh and clean without secondary mineral in-fillings, and are thus easy to close completely under the applied hydrostatic pressure conditions of the laboratory. The data also elucidate that the velocity-pressure data can successfully provide important hints about the preferred orientation of microcracks that causes P wave velocity anisotropy and shear wave splitting in cracked rocks, and that the effect of compression on the V p /V s ratios is negligible for crack-free compacted rocks. The seismic velocities of equivalent isotropic (fabric-free) and crack-free crystalline aggregates calculated from room pressure single crystal elastic constants using the Voigt average are in good agreement with the laboratory data at $200 MPa. Comparison of the seismic reflection image from the vicinity of the borehole with the normal-incidence reflection coefficient profile computed from the laboratory-measured velocities and densities infers that the seismic reflections originate from mafic (eclogite and retrograde eclogite) or ultramafic units within dominantly felsic rocks.
With acquisition and accumulation of new data of structural geological investigations and high‐resolution isotopic dating data, we have greatly improved our understanding of the tectonic events occurring in eastern China during the period from the Late Jurassic to Early Cretaceous and may give a new interpretation of the nature, timing and geodynamic settings of the “Yanshan Movement”. During the Mid‐Late Jurassic (165±5 Ma), great readjustment of plate amalgamation kinematics took place in East Asia and the tectonic regime underwent great transformation, thus initiating a new tectonic regime in which the North China Block was the center and different plates converged toward it from the north, east and southwest and forming the “East Asia convergent” tectonic system characterized by intracontinental subduction and orogeny. As a consequence, the crustal lithosphere of the East Asian continent thickened considerably during the Late Jurassic, followed immediately by Early Cretaceous substantial lithospheric thinning and craton destruction featured by drastic lithospheric extension and widespread volcano‐magmatic activities, resulting in a major biotic turnover from the Yanliao biota to Jehol Biota. Such a tremendous tectonic event that took place in the continent of China and East Asia is the basic connotation of the “Yanshan Movement”. In the paper, according to the deformation patterns, geodynamic settings and deep processes, the “Yanshan Movement” is redefined as the Late Jurassic East Asian multi‐directional plate convergent tectonic regime and its associated extensive intracontinental orogeny and great tectonic change that started at ˜165±5 Ma. The substantial lithospheric attenuation in East China is considered the post‐effect of the Yanshanian intracontinental orogeny and deformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.