A novel distributed PZT control strategy based on characteristic model is presented for space frame structure in this paper. It is a challenge to obtain the exact mechanical model for space structure, since it is a coupling MIMO plant with unknown parameters and disturbances. Thus the characteristic modeling theory is adopted to establish the needed model, which can accurately describe the dynamic characteristics of the space frame structure in real time. On basis of this model, a keep tracking controller is designed to suppress the vibration actively. It is shown that the proposed model-free method is very robust and easy to implement. To solve the complex and difficulty problem on PZT location optimization, an efficient method with modal strain energy and maximum vibration amplitude is proposed. Finally, a simulation study is conducted to investigate the effectiveness of the proposed active vibration control scheme.
This paper designs and implements a student-centered teaching evaluation system based on face recognition and pose estimation technology. Our work firstly combines classroom attendance and behavior analysis in an evaluation system. For checking attendance, we select student faces as the identification object, employing a multi-task cascaded convolutional networks (MTCNN) as a face detector and a deep learning network FaceNet to extract face features. Then the head pose information is analyzed using Ensemble of Regression Trees (ERT) algorithm, which is able to detect 68 key feature points of faces. At last, we design and implement the whole system, including designs of functional modules, service software, database and telecommunication of various parts. This system can check attendance and collect student behavior information automatically, enhancing the intelligent level of the learning and teaching system.
LSTM (Long-short Term Memory) is an effective method for trajectory prediction. However, it needs to rely on the state value of the previous unit when calculating the state value of neurons in the hidden layer, which results in too long training time and prediction time. To solve this problem, we propose Fast Trajectory Prediction method with Attention enhanced SRU (FTP-AS). Firstly, we devise an SRU (Simple Recurrent Units) based trajectory prediction method. It removes the dependencies on the hidden layer state at the previous moment, and enables the model to perform better parallel calculation, speeding up model training and prediction. However, each unit of the SRU calculates the state value at each moment independently, ignoring the timing relationship between the track points and leading to accuracy decrease. Secondly, we develop the attention mechanism to enhance SRU. The influence weight for selective learning is gained by calculating the matching degree of the hidden layer state value at each moment to improve the accuracy of the prediction. Finally, experimental results on MTA bus data set and Porto taxi data set showed that FTP-AS was 3.4 times faster and about 1.7% more accurate than the traditional LSTM method.
How to predict spatiotemporal activity from geo-tagged social media is an urgent problem. Existing methods don't make full use of spatiotemporal information and text sequence features. In view of above problem, we design a Fast Lightweight Spatiotemporal Activity Prediction method(FLSAP) based on Gated Recurrent Unit(GRU) neural network. While GRU structure can extract text sequence features, the model takes up a lot of space due to the numerous parameters. At the same time, due to the long sequence in the text, the convergence speed of GRU is slow. So, we design a novel GRU neuron, GRU with Tiny and Skip(GTS), which can quickly generate a lightweight model with higher accuracy. In GTS, we add a scalar weighted residual connection to stabilize the training. Furthermore, we extend the residual connection to a gate by reusing the parameter matrices to compress the model size. At last, in order to make the model converge faster, we add a binary gate, which determine whether to skip the current state update. According to the experimental results, compared with ReAct [1] in the spatiotemporal activity prediction task, FLSAP improves the accuracy by 3.3%, reduces the model space by 98.79% and accelerates 74.4% of convergence speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.