Script identification in the wild is of great importance in a multi-lingual robust-reading system. The scripts deriving from the same language family share a large set of characters, which makes script identification a fine-grained classification problem. Most existing methods make efforts to learn a single representation that combines the local features by making a weighted average or other clustering methods, which may reduce the discriminatory power of some important parts in each script for the interference of redundant features. In this paper, we present a novel module named Patch Aggregator (PA), which learns a more discriminative representation for script identification by taking into account the prediction scores of local patches. Specifically, we design a CNN-based method consisting of a standard CNN classifier and a PA module. Experiments demonstrate that the proposed PA module brings significant performance improvements over the baseline CNN model, achieving the state-of-the-art results on three benchmark datasets for script identification: SIW-13, CVSI 2015 and RRC-MLT 2017.
Semantic information has been proved effective in scene text recognition. Most existing methods tend to couple both visual and semantic information in an attention-based decoder. As a result, the learning of semantic features is prone to have a bias on the limited vocabulary of the training set, which is called vocabulary reliance. In this paper, we propose a novel Visual-Semantic Decoupling Network (VSDN) to address the problem. Our VSDN contains a Visual Decoder (VD) and a Semantic Decoder (SD) to learn purer visual and semantic feature representation respectively. Besides, a Semantic Encoder (SE) is designed to match SD, which can be pre-trained together by additional inexpensive large vocabulary via a simple word correction task. Thus the semantic feature is more unbiased and precise to guide the visual feature alignment and enrich the final character representation. Experiments show that our method achieves state-of-the-art or competitive results on the standard benchmarks, and outperforms the popular baseline by a large margin under circumstances where the training set has a small size of vocabulary.* Equal contribution.
Chinese text recognition is more challenging than Latin text due to the large amount of fine-grained Chinese characters and the great imbalance over classes, which causes a serious overfitting problem. We propose to apply Maximum Entropy Regularization to regularize the training process, which is to simply add a negative entropy term to the canonical cross-entropy loss without any additional parameters and modification of a model. We theoretically give the convergence probability distribution and analyze how the regularization influence the learning process. Experiments on Chinese character recognition, Chinese text line recognition and fine-grained image classification achieve consistent improvement, proving that the regularization is beneficial to generalization and robustness of a recognition model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.