The grass carp hemorrhagic disease, caused by the grass carp reovirus (GCRV), has resulted in severe economic losses in the aquaculture industry in China. VP4 and VP35 are outer capsid proteins of GCRV and can induce an immune response in the host. Here, three recombinant baculoviruses, AcMNPV-VP35, AcMNPV-VP4, and AcMNPV-VP35-VP4, were generated to express recombinant VP4 and VP35 proteins from GCRV type II in insect cells by using the Bac-to-Bac baculovirus expression system to create a novel subunit vaccine. The expression of recombinant VP35, VP4, and VP35-VP4 proteins in Sf-9 cells were confirmed by Western blotting and immunofluorescence. Recombinant VP35, VP4, and VP35-VP4 were purified from baculovirus-infected cell lysates and injected intraperitoneally (3 μg/fish) into the model rare minnow, Gobiocypris rarus. After 21 days, the immunized fish were challenged with virulent GCRV. Liver, spleen, and kidney samples were collected at different time intervals to evaluate the protective efficacy of the subunit vaccines. The mRNA expression levels of some immune-related genes detected by using quantitative real-time PCR (qRT-PCR) were significantly upregulated in the liver, spleen, and kidney, with higher expression levels in the VP35-VP4 group. The nonvaccinated fish group showed 100% mortality, whereas the VP35-VP4, VP4, and VP35 groups exhibited 67%, 60%, and 33% survival, respectively. In conclusion, our results revealed that recombinant VP35 and VP4 can induce immunity and protect against GCRV infection, with their combined use providing the best effect. Therefore, VP35 and VP4 proteins can be used as a novel subunit vaccine against GCRV infection.
The grass carp reovirus (GCRV) causes severe hemorrhagic disease with high mortality and leads to serious economic losses in the grass carp (Ctenopharyngodon idella) industry in China. Oral vaccine has been proven to be an effective method to provide protection against fish viruses. In this study, a recombinant baculovirus BmNPV-VP35-VP4 was generated to express VP35 and VP4 proteins from GCRV type Ⅱ via Bac-to-Bac baculovirus expression system. The expression of recombinant VP35-VP4 protein (rVP35-VP4) in Bombyx mori embryo cells (BmE) and silkworm pupae was confirmed by Western blotting and immunofluorescence assay (IFA) after infection with BmNPV-VP35-VP4. To vaccinate the grass carp by oral route, the silkworm pupae expressing the rVP35-VP4 proteins were converted into a powder after freeze-drying, added to artificial feed at 5% and fed to grass carp (18 ± 1.5 g) for six weeks, and the immune response and protective efficacy in grass carp after oral vaccination trial was thoroughly investigated. This included blood cell counting and classification, serum antibody titer detection, immune-related gene expression and the relative percent survival rate in immunized grass carp. The results of blood cell counts show that the number of white blood cells in the peripheral blood of immunized grass carp increased significantly from 14 to 28 days post-immunization (dpi). The differential leukocyte count of neutrophils and monocytes were significantly higher than those in the control group at 14 dpi. Additionally, the number of lymphocytes increased significantly and reached a peak at 28 dpi. The serum antibody levels were significantly increased at Day 14 and continued until 42 days post-vaccination. The mRNA expression levels of immune-related genes (IFN-1, TLR22, IL-1β, MHC I, Mx and IgM) were significantly upregulated in liver, spleen, kidney and hindgut after immunization. Four weeks post-immunization, fish were challenged with virulent GCRV by intraperitoneal injection. The results of this challenge study show that orally immunized group exhibited a survival rate of 60% and relative percent survival (RPS) of 56%, whereas the control group had a survival rate of 13% and RPS of 4%. Taken together, our results demonstrate that the silkworm pupae powder containing baculovirus-expressed VP35-VP4 proteins could induce both non-specific and specific immune responses and protect grass carp against GCRV infection, suggesting it could be used as an oral vaccine.
A new lipid system broadening the capacity of antigen carriage, including mRNA and protein, is established, and an assembled virus-like-structure (VLS) encapsulated mRNA of S1 protein from XBB.1 and loaded S1 protein from omicron BA.1 on the surface is identified. This characterized VLS enables to specifically augment mRNA expression in human respiratory epithelial cells and macrophages via its loaded S1 protein on the surface interacting with ACE2 or DC-SIGN molecules of cells. It also archives effective mRNA expression in mouse dendritic cells (DCs) and macrophages via surface S1 protein binding to DC-SIGN molecules followed by the activation of DCs and macrophages in mice. The intensive antibody response against viral variants in Balb/c mice immunized by VLS was observed to be greater than those immunized by mRNA or protein vaccine alone, while ACE+/+ mice and hamsters immunized with VLS were observed to be more effective for restraining viral replication of the Omicron or Wuhan strain challenge. The mechanism of this robust immunity elicited by VLS was found being involved in the integrated effect of diverse signals from activated innate immunity to the adaptive immune system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.