Landscape change is a dynamic feature of landscape structure and function over time which is usually affected by natural and human factors. The evolution of rocky desertification is a typical landscape change that directly affects ecological environment governance and sustainable development. Guizhou is one of the most typical subtropical karst landform areas in the world. Its special karst rocky desertification phenomenon is an important factor affecting the ecological environment and limiting sustainable development. In this paper, remote sensing imagery and machine learning methods are utilized to model and analyze the spatiotemporal variation of rocky desertification in Guizhou. Based on an improved CA-Markov model, rocky desertification scenarios in the next 30 years are predicted, providing data support for exploration of the evolution rule of rocky desertification in subtropical karst areas and for effective management. The specific results are as follows: (1) Based on the dynamic degree, transfer matrix, evolution intensity, and speed, the temporal and spatial evolution of rocky desertification in Guizhou from 2001 to 2020 was analyzed. It was found that the proportion of no rocky desertification (NRD) areas increased from 48.86% to 63.53% over this period. Potential rocky desertification (PRD), light rocky desertification (LRD), middle rocky desertification (MRD), and severe rocky desertification (SRD) continued to improve, with the improvement showing an accelerating trend after 2010. (2) An improved CA-Markov model was used to predict the future rocky desertification scenario; compared to the traditional CA-Markov model, the Lee–Sallee index increased from 0.681 to 0.723, and figure of merit (FOM) increased from 0.459 to 0.530. The conclusions of this paper are as follows: (1) From 2001 to 2020, the evolution speed of PRD was the fastest, while that of SRD was the slowest. Rocky desertification control should not only focus on areas with serious rocky desertification, but also prevent transformation from NRD to PRD. (2) Rocky desertification will continue to improve over the next 30 years. Possible deterioration areas are concentrated in high-altitude areas, such as the south of Bijie and the east of Liupanshui.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.