Objectives
Although myeloid-derived suppressive cells (MDSCs) have been linked to T-cell tolerance, their role in autoimmune rheumatoid arthritis (RA) remains elusive. Here we investigate the potential association of MDSCs with the disease pathogenesis using a preclinical model of RA and specimen collected from RA patients.
Methods
The frequency of MDSCs in blood, lymphoid tissues, inflamed paws, or synovial fluid and their association with disease severity, tissue inflammation, and the levels of pathogenic T-helper (Th) 17 cells was examined in arthritic mice or in patients with RA (n=35) and osteoarthritis (OA, n=15). The MDSCs in arthritic mice were also characterized for their phenotype, inflammation status, T-cell suppressive activity, and their capacity of pro-Th17 cell differentiation. The involvement of MDSCs in the disease pathology and a Th17 response was examined by adoptive transfer or antibody depletion of MDSCs in arthritic mice or by co-culturing mouse or human MDSCs with naïve CD4+ T cells under Th17-polarizing conditions.
Results
MDSCs significantly expanded in arthritic mice and in RA patients, which correlated positively with disease severity and an inflammatory Th17 response. While displaying T-cell suppressive activity, MDSCs from arthritic mice produced high levels of inflammatory cytokines (e.g., IL-1β, TNF-α). Both mouse and human MDSCs promoted Th17 cell polarization ex vivo. Transfer of MDSCs facilitated disease progression, whereas their elimination in arthritic mice ameliorates disease symptoms concomitant with reduction of IL-17A/Th17 cells.
Conclusions
Our studies suggest that proinflammatory MDSCs with their capacity to drive Th17 cell differentiation may be a critical pathogenic factor in autoimmune arthritis.
Chronic liver disease mediated by activation of hepatic stellate cells (HSCs) and Kupffer cells (KCs) leads to liver fibrosis. Here, we aimed to investigate the molecular mechanism and define the cell type involved in mediating the sphingosine kinase (SphK)1‐dependent effect on liver fibrosis. The levels of expression and activity of SphK1 were significantly increased in fibrotic livers compared with the normal livers in human. SphK1 was coexpressed with a range of HSC/KC markers including desmin, α‐smooth muscle actin (α‐SMA) and F4/80 in fibrotic liver. Deficiency of SphK1 (SphK1−/−) resulted in a marked amelioration of hepatic injury, including transaminase activities, histology, collagen deposition, α‐SMA and inflammation, in CCl4 or bile duct ligation (BDL)‐induced mice. Likewise, treatment with a specific inhibitor of SphK1, 5C, also significantly prevented liver injury and fibrosis in mice induced by CCl4 or BDL. In cellular levels, inhibition of SphK1 significantly blocked the activation and migration of HSCs and KCs. Moreover, SphK1 knockout in KCs reduced the secretion of CCL2, and SphK1 knockout in HSCs reduced C‐C motif chemokine receptor 2 ([CCR2] CCL2 receptor) expression in HSCs. CCL2 in SphK1−/− mice was lower whereas microRNA‐19b‐3p in SphK1−/− mice was higher compared with wild‐type (WT) mice. Furthermore, microRNA‐19b‐3p downregulated CCR2 in HSCs. The functional effect of SphK1 in HSCs on liver fibrosis was further strengthened by the results of animal experiments using a bone marrow transplantation (BMT) method. Conclusion: SphK1 has distinct roles in the activation of KCs and HSCs in liver fibrosis. Mechanistically, SphK1 in KCs mediates CCL2 secretion, and SphK1 in HSCs upregulates CCR2 by downregulation of miR‐19b‐3p. (Hepatology 2018).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.