Most common industrial xylanases are produced from filamentous fungi. In this study, the codon-optimized xynA gene encoding xylanase A from the fungus Penicilium citrinum was successfully synthesized and expressed in the yeast Pichia pastoris. The levels of secreted enzyme activity under the control of glyceraldehyde-3-phosphate dehydrogenase (PGAP) and alcohol oxidase 1 (PAOX1) promoters were compared. The Pc Xyn11A was produced as a soluble protein and the total xylanase activity under the control of PGAP and PAOX1 was 34- and 193-fold, respectively, higher than that produced by the native strain of P. citrinum. The Pc Xyn11A produced under the control of the PAOX1 reached a maximum activity of 676 U/mL when induced with 1% (v/v) methanol every 24 h for 5 days. The xylanase was purified by ion exchange chromatography and then characterized. The enzyme was optimally active at 55 °C and pH 5.0 but stable over a broad pH range (3.0–9.0), retaining more than 80% of the original activity after 24 h or after pre-incubation at 40 °C for 1 h. With birchwood xylan as a substrate, Pc Xyn11A showed a Km(app) of 2.8 mg/mL, and a kcat of 243 s−1. The high level of secretion of Pc Xyn11A and its stability over a wide range of pH and moderate temperatures could make it useful for a variety of biotechnological applications.
Total (TWW) and tapioca starch wash wastewater (TSWW) from a cassava processing plant in Thailand were analyzed for their composition with a view to evaluate their potential as substrates for solvent production by ABE fermentation with Clostridium spp. Starch was detected at a 1.63-fold higher level in the TWW than that in the TSWW (24.4% and 15.0% (w/w), respectively). The chemical oxygen demand (COD) was broadly similar (20,093 and 20,433 mg/L), but the biological oxygen demand (BOD) was 1.84-fold higher (18,000 and 9,750 mg/L) in the TWW than that in the TSWW. Thus, the TSWW was selected as a substrate to evaluate its potential for butanol and ethanol production by two Clostridium spp. The combined ethanol plus butanol production in the TSWW at pH 6.5 was higher than that at pH 4.5, being around 27.8- and 3.4-fold higher in C. butyricum TISTR 1032 and C. acetobutylicum ATCC 824, respectively. In both strains, the butanol (and combined butanol plus ethanol) production level was improved at pH 5.5. The addition of yeast extract increased the bacterial cell production, but did not significantly improve solvent productivity in C. acetobutylicum, and even decreased butanol production by C. butyricum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.