Objective MicroRNAs, as essential players in tumorigenesis, have been demonstrated to have a revolutionary effect on human cancer research. Ovarian cancer is the primary reason of death among gynecologic malignancies. In view of this, it is significant to identify prognostic and predictive markers for treatment of ovarian cancer. The aim of this study was to probe into the effects of miR‐378a‐3p and protein disulfide‐isomerase A4 (PDIA4) on the biological functions of ovarian cancer cells. Methods miR‐378a‐3p expression and PDIA4 messenger RNA expression in human ovarian cancer cells, normal human ovarian epithelial cells, and serum of both ovarian cancer patients and healthy people were detected by reverse transcription‐quantitative polymerase chain reaction, and the PDIA4 protein expression was tested by Western blot analysis. Ovarian cancer OVCAR3 and SKOV3 cells were transfected or cotransfected with miR‐378a‐3p mimic or pcDNA3.1‐PDIA4 or their negative control plasmids to explore their roles in biological functions in ovarian cancer cells. Luciferase activity and RIPA assays were implemented to validate the interaction between miR‐378a‐3p and PDIA4. Western blot analysis was utilized to detect phosphatidylinositol‐3 kinase/serine/threonine kinase (PI3K/AKT) signaling pathway‐related protein expression and their phosphate expression levels. Results miR‐378a‐3p was elevated and PDIA4 was decreased in ovarian cancer cells and serum. In addition, miR‐378a‐3p mimic induced ovarian cancer cell growth, while miR‐378a‐3p inhibitor and pcDNA3.1‐PDIA4 presented an inverse trend. pcDNA3.1‐PDIA4 partially eliminated the capabilities of miR‐378a‐3p mimic on ovarian cancer progression. Meanwhile, miR‐378a‐3p was found to negatively regulate PDIA4, and miR‐378a‐3p mimic increased the phosphorylation levels of AKT and PI3K, while pcDNA3.1‐PDIA4 exhibited an opposite tendency. Furthermore, pcDNA3.1‐PDIA4 largely eliminated the functions of miR‐378a‐3p mimic on phosphorylation levels of AKT and PI3K. Conclusion This study provides evidences that miR‐378a‐3p activates PI3K/AKT signaling pathway by modulating PDIA4 expression, thereby playing a role in promoting the growth of ovarian cancer cells. This study provides novel directions for targeted therapy of ovarian cancer.
Objective. Increased expression of KDM1A and decreased expression of DACT1 in cervical cancer cells were noticed in a previous study. This study is aimed at exploring the mechanism behind the KDM1A regulation on DACT1 in cervical cancer cells. Methods. The expression profile of KDM1A and DACT1 in cervical cancer tissues was searched in TCGA database. In vitro experiments verified the effect of KDM1A and DACT1 on proliferation and migration ability of cervical cancer cell lines after cell transfection. The interaction of KDM1A with HDAC1 was identified by coimmunoprecipitation (Co-IP). The expression levels of KDM1A and DACT1 in cervical cancer cell lines were determined by qRT-PCR and western blot. Results. TCGA database showed that cervical cancer tissues had elevated expression of KDM1A and decreased expression of DACT1, which was consistent with the observation in cervical cancer cell lines. KDM1A was found to negatively regulate DACT1 through histone deacetylation. Meanwhile, the downregulation of KDM1A or overexpression of DACT1 could suppress the cell proliferation and migration ability in HeLa and SiHa cells. Cotransfection of KDM1A and DACT1 overexpression could reverse the increased cell proliferation and migration ability induced by KDM1A overexpression. Conclusion. KDM1A can downregulate DACT1 expression through histone deacetylation and therefore suppress the proliferation and migration of cervical cancer cells.
Preeclampsia (PE) is a hypertensive disorder of pregnancy. PE patients were reported to have higher serum levels of C-reactive protein (CRP), interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α) than those in healthy controls. However, whether the expressions of these inflammation biomarkers have a causal relationship with PE is unspecified. We applied the Mendelian randomization method to infer the causal relationship between inflammation biomarkers (e.g., CRP, IL-6, interleukin 1 receptor antagonist [IL-1ra] and TNF-α) and PE. Single nucleotide polymorphisms (SNPs) strongly related to inflammation biomarkers were used as instrumental variables. CRP, IL-1ra and IL-6 levels showed no significant effect on PE progression, while the genetic predicted higher level of TNF-α significantly increased the risk of PE (OR per 1-SD increase in TNF-α: 4.33; 95% CI [1.99, 9.39]; p = .00021). The findings suggest that pro-inflammatory activity of TNF-α could be a determinant for PE progression. More antenatal care should be given to those pregnant women with higher level of inflammation biomarkers, especially TNF-α.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.