The fermentation ability of thermotolerant Kluyveromyces marxianus BUNL-21 isolated in Laos was investigated. Comparison with thermotolerant K. marxianus DMKU3-1042 as one of the most thermotolerant yeasts isolated previously revealed that the strain possesses stronger ability for conversion of xylose to ethanol, resistance to 2-deoxyglucose in the case of pentose, and tolerance to various stresses including high temperature and hydrogen peroxide. K. marxianus BUNL-21 was found to have ethanol fermentation activity from xylose that is slightly lower and much higher than that of Scheffersomyces stipitis (Pichia stipitis) at 30 °C and at higher temperatures, respectively. The lower ethanol production seems to be due to large accumulation of acetic acid. The possible mechanism of acetic acid accumulation is discussed. In addition, it was found that both K. marxianus strains produced ethanol in the presence of 10 mM hydroxymethylfurfural or furfural, at a level almost equivalent to that in their absence. Therefore, K. marxianus BUNL-21 is a highly competent yeast for high-temperature ethanol fermentation with lignocellulosic biomass. Electronic supplementary materialThe online version of this article (doi:10.1186/s40064-016-1881-6) contains supplementary material, which is available to authorized users.
Thermotolerant ethanologenic yeasts receive attention as alternative bio-ethanol producers to traditionally used yeast, Saccharomyces cerevisiae. Their utilization is expected to provide several benefits for bio-ethanol production due to their characteristics and robustness. They have been isolated from a wide variety of environments in a number of ASEAN countries: Thailand, Vietnam, Laos, and Indonesia. One of these yeasts, Kluyveromyces marxianus has been investigated regarding characteristics. Some strains efficiently utilize xylose, which is a main component of the 2nd generation biomass. In addition, the genetic basis of K. marxianus has been revealed by genomic sequencing and is exploited for further improvement of the strains by thermal adaptation or gene engineering techniques. Moreover, the glucose repression of K. marxianus and its mechanisms has been investigated. Results suggest that K. marxianus is an alternative to S. cerevisiae in next-generation bio-ethanol production industry. Indeed, we have succeeded to apply K. marxianus for bio-ethanol production in a newly developed process, which combines high-temperature fermentation with simultaneous fermentation and distillation under low pressure. This chapter aims to provide valuable information on thermotolerant ethanologenic yeasts and their application, which may direct the economic bioproduction of ethanol and other useful materials in the future.Recently, thermotolerant microorganisms were found among mesophiles with optimum growth temperatures that are 5-10°C higher than those of the typical mesophilic strains Fuel Ethanol Production from Sugarcane 122 Potential of Thermotolerant Ethanologenic Yeasts Isolated from ASEAN Countries… http://dx.doi.org/10.5772/intechopen.79144 123Recently, there have been several reports on ethanol production at high temperatures using P. kudriavzevii (formerly known as I. orientalis). Several P. kudriavzevii strains were reported to grow and produce high levels of ethanol at high temperatures. The strain DMKU 3-ET15 was isolated from traditional fermented pork sausage in Thailand by an enrichment technique in a medium supplemented with 4% ethanol at 40°C. The strain produced 78.6 g/L ethanol from 180 g/L glucose at 40°C [20]. The strain KVMP10 that was isolated from soil located beneath apple trees for ethanol production from orange peel achieved 54 g/L ethanol at 42°C [48]. Strain RZ8-1 that was recently isolated from various samples collected from plant orchards in Thailand produced 33.8 g/L ethanol from 160 g/L glucose at 40°C [49].
Thermotolerant yeasts, which are expected to be applicable for high-temperature fermentation as an economical process, were isolated from four provinces in Laos. Of these yeasts, five isolates exhibited stronger fermentation abilities in a 16% sugars-containing medium of glucose, sucrose, sugarcane or molasses at 40°C than that of Kluyveromyces marxianus DMKU 3-1042, one of the most thermotolerant and efficient yeasts isolated previously in Thailand. One of the five strains, BUNL-17, exhibited the highest ethanol fermentation performance at 45°C. Yeast identification was achieved by whole-cell matrixassisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) analysis as well as by nucleotide sequencing of the D1/D2 domain of the large subunit rRNA gene, revealing that the isolated strains can be categorized into Pichia kudriavzevii, Cyberlindnera rhodanensis and K. marxianus and that all of the five strains are K. marxianus. The results of this study showed that the former analysis is much faster than the latter and reliable and equivalent to the latter.
Candida tropicalis, a xylose-fermenting yeast, has the potential for converting cellulosic biomass to ethanol. Thermotolerant C. tropicalis X-17, which was isolated in Laos, was subjected to repetitive long-term cultivation with a gradual increase in temperature (RLCGT) in the presence of a high concentration of glucose, which exposed cells to various stresses in addition to the high concentration of glucose and high temperatures. The resultant adapted strain demonstrated increased tolerance to ethanol, furfural and hydroxymethylfurfural at high temperatures and displayed improvement in fermentation ability at high glucose concentrations and xylose-fermenting ability. Transcriptome analysis revealed the up-regulation of a gene for a glucose transporter of the major facilitator superfamily and genes for stress response and cell wall proteins. Additionally, hydropathy analysis revealed that three genes for putative membrane proteins with multiple membrane-spanning segments were also up-regulated. From these findings, it can be inferred that the up-regulation of genes, including the gene for a glucose transporter, is responsible for the phenotype of the adaptive strain. This study revealed part of the mechanisms of fermentability at high glucose concentrations in C. tropicalis and the results of this study suggest that RLCGT is an effective procedure for improving multistress tolerance.
Background 2,3-Butanediol (2,3-BD), a valuable compound used for chemicals, cosmetics, pesticides and pharmaceuticals, has been produced by various microbes. However, no high-temperature fermentation of the compound at high productivity has been reported. Methods Thermotolerant xylose-utilizing microbes were isolated from 6 different districts in Laos and screened for a low accumulation of xylitol in a xylose medium at 37 ˚C. One isolate was found to produce 2,3-BD and identified by 16S rDNA sequencing. The 2,3-BD fermentation capacity was investigated at different temperatures using xylose and glucose as carbon sources, and the fermentation parameters were determined by a high-performance liquid chromatography system. Results By screening for a low accumulation of xylitol in a xylose medium, one isolate that accumulated almost no xylitol was obtained. Further analyses revealed that the isolate is Cronobacter sakazakii and that it has the ability to produce 2,3-BD at high temperatures. When xylose and glucose were used, this strain, named C. sakazakii OX-25, accumulated 2,3-BD in a short period before the complete consumption of these sugars and then appeared to convert 2,3-BD to acetoin. The optimum temperature of the 2,3-BD fermentation was 42 ˚C to 45 ˚C, and the maximum yield of 2,3-BD was 0.3 g/g at 12 h in 20 g/l xylose medium and 0.4 g/g at 6 h in 20 g/l glucose medium at 42 ˚C. The 2,3-BD productivity of the strain was higher than the 2,3-BD productivities of other non-genetically engineered microorganisms reported previously, and the highest productivity was 0.6 g/l·h and 1.2 g/l·h for xylose and glucose, respectively. Conclusions Among thermotolerant microbes isolated in Laos, we discovered a strain, C. sakazakii OX-25, that can convert xylose and glucose to 2,3-BD with high efficiency and high productivity at high temperatures, suggesting that C. sakazakii OX-25 has the potential for industrial application to produce 2,3-BD as an important platform chemical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.