The common constellation of features found in the two affected subjects indicates that they have a newly recognised microdeletion syndrome involving haploinsufficiency of one or more genes deleted within at least a 4.5-Mb segment of the 2p15-16.1 region.
This preliminary study shows that array-CGH is useful for detecting CNVs in cases of RPL. Further investigations of CNVs, particularly those involving genes that are imprinted in placenta, in women with RPL could be worthwhile.
Cullin 4A (Cul4A) is important in cell survival, development, growth and the cell cycle, but its role in mesothelioma has not been studied. For the first time, we identified amplification of the Cul4A gene in four of five mesothelioma cell lines. Consistent with increased Cul4A gene copy number, we found that Cul4A protein was overexpressed in mesothelioma cells as well. Cul4A protein was also overexpressed in 64% of primary malignant pleural mesothelioma (MPM) tumours. Furthermore, knockdown of Cul4A with shRNA in mesothelioma cells resulted in up-regulation of p21 and p27 tumour suppressor proteins in a p53-independent manner in H290, H28 and MS-1 mesothelioma cell lines. Knockdown of Cul4A also resulted in G0/G1 cell cycle arrest and decreased colony formation in H290, H28 and MS-1 mesothelioma cell lines. Moreover, G0/G1 cell cycle arrest was partially reversed by siRNA down-regulation of p21 and/or p27 in Cul4A knockdown H290 cell line. In the contrary, overexpression of Cul4A resulted in down-regulation of p21 and p27 proteins and increased colony formation in H28 mesothelioma cell line. Both p21 and p27 showed faster degradation rates in Cul4A overexpressed H28 cell line and slower degradation rates in Cul4A knockdown H28 cell line. Our study indicates that Cul4A amplification and overexpression play an oncogenic role in the pathogenesis of mesothelioma. Thus, Cul4A may be a potential therapeutic target for MPM.
Intellectual disability (ID) affects about 3% of the population (IQ < 70), and in about 40% of moderate (IQ 35-49) to severe ID (IQ < 34), and 70% of cases of mild ID (IQ 50-70), the etiology of the disease remains unknown. It has long been suspected that chromosomal gains and losses undetectable by routine cytogenetic analysis (i.e., less than 5-10 Mb in size) are implicated in ID of unknown etiology. Array CGH has recently been used to perform a genome-wide screen for submicroscopic gains and losses in individuals with a normal karyotype but with features suggestive of a chromosome abnormality. In two recent studies, the technique has demonstrated a approximately 15% detection rate for de novo copy number changes of individual clones or groups of clones. Here, we describe a study of 22 individuals with mild to moderate ID and nonsyndromic pattern of dysmorphic features suspicious of an underlying chromosome abnormality, using the 3 Mb and 1 Mb commercial arrays (Spectral Genomics). Deletions and duplications of 16 clones, previously described to show copy number variability in normal individuals [Iafrate et al., 2004; Lapierre et al., 2004; Schoumans et al., 2004; Vermeesch et al., 2005] were seen in 21/22 subjects and were considered polymorphisms. In addition, three subjects showed submicroscopic deletions and duplications not previously reported as normal variants. Two of these submicroscopic changes were of de novo origin (microdeletions at 7q36.3 and a microduplication at 11q12.3-13.1) and one was of unknown origin as parental testing of origin could not be performed (microduplication of Xp22.3). The clinical description of the three subjects with submicroscopic chromosomal changes at 7q36.3, 11q12.3-13.1, Xp22.3 is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.