BACKGROUND/AIMS-Studies in animal models and humans suggest a link between endotoxemia and non-alcoholic steatohepatitis. Since Kupffer cells are responsible for clearing endotoxin and are activated via endotoxin interaction with Toll-like receptor 4 (TLR-4), we examined the relationship between hepatic TLR-4 expression and Kupffer cell content during the genesis of steatohepatitis.METHODS-Male C57BL/6, C3H/HouJ and TLR-4 mutant C3H/HeJ mice were fed control or methionine/choline-deficient diet (MCDD). In one group of C57BL/6 mice, Kupffer cells were depleted by weekly intravenous injections of clodronate liposomes. After 3 weeks, serum ALT activity and portal endotoxin levels were measured. Real-time PCR was used to examine mRNA expression of TLR-4, TLR-2, CD14, MD-2, TGFβ, TNFα CD36 PPAR-α, liver fatty acid binding protein (L-FABP) and collagen α1.RESULTS-We observed histological evidence typical of steatohepatitis, portal endotoxemia and enhanced TLR-4 expression in wild type mice fed MCDD. In contrast, injury and lipid accumulation markers were significantly lower in TLR-4 mutant mice. Destruction of Kupffer cells with clodronate liposomes blunted histological evidence of steatohepatitis and prevented increases in TLR-4 expression.CONCLUSIONS-These findings demonstrate the importance of TLR-4 signaling and underscore a direct link between TLR-4 and Kupffer cells in the pathogenesis of steatohepatitis.
The AKT/PKB kinase is a key signaling component of one of the most frequently activated pathways in cancer and is a major target of cancer drug development. Most studies have focused on its activation by Receptor Tyrosine Kinase (RTK) mediated Phosphatidylinositol-3-OH kinase (PI3K) activation or loss of Phosphatase and Tensin homolog (PTEN). We have uncovered that growth factors binding to RTKs lead to activation of a non-receptor tyrosine kinase, Ack1 (also known as ACK or TNK2), which directly phosphorylates AKT at an evolutionarily conserved tyrosine 176 in the kinase domain. Tyr176-phosphorylated AKT localizes to the plasma membrane and promotes Thr308/Ser473-phosphorylation leading to AKT activation. Mice expressing activated Ack1 specifically in the prostate exhibit AKT Tyr176-phosphorylation and develop murine prostatic intraepithelial neoplasia (mPINs). Further, expression levels of Tyr176-phosphorylated-AKT and Tyr284-phosphorylated-Ack1 were positively correlated with the severity of disease progression, and inversely correlated with the survival of breast cancer patients. Thus, RTK/Ack1/AKT pathway provides a novel target for drug discovery.
Kupffer cells isolated from rats early after ethanol exhibited tolerance to LPS, whereas sensitization was observed later. It is likely that both of these phenomena are caused by gut-derived endotoxin and that sensitization in Kupffer cells is caused by increases in CD14.
Mammalian sirtuin 1 (SIRT1) may control fatty acid homeostasis in liver. However, this possibility and underlying mechanism remain to be established. In this study, we addressed the issues by examining the metabolic phenotypes of SIRT1 heterozygous knockout (SIRT1(+/-)) mice. The study was conducted in the mice on three different diets including a low-fat diet (5% fat wt/wt), mediate-fat diet (11% fat wt/wt), and high-fat diet (HFD, 36% fat wt/wt). On low-fat diet, the mice did not exhibit any abnormality. On mediate-fat diet, the mice exhibited a significant increase in hepatic steatosis with elevated liver/body ratio, liver size, liver lipid (triglyceride, glycerol, and cholesterol) content, and liver inflammation. The hepatic steatosis was deteriorated in the mice by HFD. In the liver, lipogenesis was increased, fat export was reduced, and beta-oxidation was not significantly changed. Body weight and fat content were increased in response to the dietary fat. Fat was mainly increased in sc adipose tissue and liver. Inflammation was also elevated in epididymal fat. Whole body energy expenditure and substrate utilization were reduced. Food intake, locomotor activity, and fat absorption were not changed. These data suggest that a reduction in the SIRT1 activity increases the risk of fatty liver in response to dietary fat. The liver steatosis may be a result of increased lipogenesis and reduced liver fat export. The inflammation may contribute to the pathogenesis of hepatic steatosis as well. A reduction in lipid mobilization may contribute to the hepatic steatosis and low energy expenditure.
The role of Kupffer cells in CCl(4)-induced fibrosis was investigated in vivo. Male Wistar rats were treated with phenobarbital and CCl(4) for 9 wk, and a group of rats were injected with the Kupffer cell toxicant gadolinium chloride (GdCl(3)) or were fed glycine, which inactivates Kupffer cells. After CCl(4) alone, the fibrosis score was 3.0 +/- 0.1 and collagen protein and mRNA expression were elevated, but GdCl(3) or glycine blunted these parameters. Glycine did not alter cytochrome P-450 2E1, making it unlikely that glycine affects CCl(4) metabolism. Treatment with GdCl(3) or glycine prevented CCl(4)-induced increases in transforming growth factor (TGF)-beta 1 protein levels and expression. CCl(4) treatment increased alpha-smooth muscle actin staining (score 3.0 +/- 0.2), whereas treatment with GdCl(3) and glycine during CCl(4) exposure blocked this effect (1.2 +/- 0.5); there was no staining with glycine treatment. These results support previous in vitro data and demonstrate that treatment of rats with the selective Kupffer cell toxicant GdCl(3) prevents stellate cell activation and the development of fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.