GPR54 inactivation does not impede neuroendocrine onset of puberty; rather, it delays and slows down pubertal maturation of the gonadotropic axis. The L102P loss of function mutation in GPR54 results in a more quantitative than qualitative defect of gonadotropic axis activation.
KiSS1 is a putative metastasis suppressor gene in melanoma and breast cancer-encoding kisspeptins, which are also described as neuroendocrine regulators of the gonadotropic axis. Negative as well as positive regulation of KiSS1 gene expression by estradiol (E 2 ) has been reported in the hypothalamus. Estrogen receptor a (ERa level is recognized as a marker of breast cancer, raising the question of whether expression of KiSS1 and its G-protein-coupled receptor (GPR54) is down-or upregulated by estrogens in breast cancer cells. KiSS1 was found to be expressed in MDA-MB-231, MCF7, and T47D cell lines, but not in ZR75-1, L56Br, and MDA-MB-435 cells. KiSS1 mRNA levels decreased significantly in ERa-negative MDA-MB-231 cells expressing recombinant ERa. In contrast, tamoxifen (TAM) treatment of ERa-positive MCF7 and T47D cells increased KiSS1 and GPR54 levels. The clinical relevance of this negative regulation of KiSS1 and GPR54 by E 2 was then studied in postmenopausal breast cancers. KiSS1 mRNA increased with the grade of the breast tumors. ERa-positive invasive primary tumors expressed sevenfold lower KiSS1 levels than ERanegative tumors. Among ERa-positive breast tumors from postmenopausal women treated with TAM, high KiSS1 combined with high GPR54 mRNA tumoral levels was unexpectedly associated with shorter relapse-free survival (RFS) relative to tumors expressing low tumoral mRNA levels of both genes. The contradictory observation of putative metastasis inhibitor role of kisspeptins and RFS to TAM treatment suggests that evaluation of KiSS1 and its receptor tumoral mRNA levels could be new interesting markers of the tumoral resistance to anti-estrogen treatment.
Isolated gonadotropic deficiency or isolated hypogonadotropic hypogonadism is defined as a low sexual hormone secretion by the gonads associated with low LH and FSH plasma levels. Kallmann syndrome is defined as a congenital isolated gonadotropic deficiency associated with anosmia whereas the phenotype of the idiopathic form is limited to the gonadotropic axis. For several years, it has been known that mutations of the KAL-1 gene or loss-of-function mutations of GnRH receptor did not explain all familial cases of isolated gonadotropic deficiency with or without anosmia. Thus the existence of other genes playing a major role in the physiology of the gonadotropic axis was highly suggested. In 2003, fibroblast growth factor receptor 1 (FGFR1) and GPR54 were shown to be two of these genes. FGFR1 loss-of-function mutations were reported in Kallmann syndrome whereas inactivating mutations of GPR54 were described in the idiopathic form of the gonadotropic deficiency. These genetic studies have opened up a new chapter in the physiology and the pharmacology of the gonadotropic axis.
European Journal of Endocrinology 151 U83-U88
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.