The species X. index, X. diversicaudatum, X. vuittenezi, and X. italiae are established (E) or putative (P) vectors of Grapevine fanleaf virus (GFLV) (E), Arabis mosaic virus (E), Grapevine chrome mosaic virus (P), and GFLV (P) nepoviruses of grapevine, respectively. All four species are very closely related taxonomically and their low field densities make them difficult to identify from morphological and morphometrical diagnostic characters when only single or few individuals are detected. To improve diagnostic accuracy, a simple method was developed. The internal transcribed spacer 1 (ITS1) region spanning the 18S and 5.8S ribosomal genes was sequenced in one population of each species using two conserved primers from these genes. The ITS1 fragments were 1,132 bp (X. vuittenezi), 1,153 bp (X. index), 1,175 bp (X. diversicaudatum), and 1,190 bp (X. italiae), i.e., a difference of over 5% between the extremes. The sequence variability made it possible to design species-specific internal sense primers that amplified, in combination with the same antisense ITS1 primer, a single signature fragment (340 bp for X. index, 414 bp for X. italiae, 591 bp for X. vuittenezi, and 813 bp for X. diversicaudatum). Tests with DNA from a single adult or juvenile nematode confirmed the specificity of the primers from diverse isolates or populations. The primers were successfully used in a multiplex test for the reliable detection of two to four mixed species, each represented by a single individual. This multiplex-based diagnostic tool will be particularly useful for successful nematode management practices in vineyards.
SUMMARYThe pinewood nematode (PWN), Bursaphelenchus xylophilus , is a major pathogen of conifers, which impacts on forest health, natural ecosystem stability and international trade. As a consequence, it has been listed as a quarantine organism in Europe. A real-time PCR approach based on TaqMan chemistry was developed to detect this organism. Specific probe and primers were designed based on the sequence of the Msp I satellite DNA family previously characterized in the genome of the nematode. The method proved to be specific in tests with target DNA from PWN isolates from worldwide origin. From a practical point of view, detection limit was 1 pg of target DNA or one individual nematode. In addition, PWN genomic DNA or single individuals were positively detected in mixed samples in which B. xylophilius was associated with the closely related non-pathogenic species B. mucronatus , up to the limit of 0.01% or 1% of the mixture, respectively. The real-time PCR assay was also used in conjunction with a simple DNA extraction method to detect PWN directly in artificially infested wood samples. These results demonstrate the potential of this assay to provide rapid, accurate and sensitive molecular identification of the PWN in relation to pest risk assessment in the field and quarantine regulation.
The pinewood nematode Bursaphelenchus xylophilus is a severe pest of coniferous trees, and has been designated as a quarantine organism in the European Union. From the sequence of a satellite DNA family characterized in the genome of this nematode, we developed a PCR procedure that allowed the specific discrimination of this species from closely related Bursaphelenchus species found on coniferous trees. Moreover, because of the repetitive nature of satellite DNA, positive amplification was achieved from B. xylophilus single individuals, which should contribute to an easy diagnostic procedure for assisting in the management of this major pest of conifer forests.
In eukaryotes, repeat proteins (i.e. proteins that contain a tandem arrangement of repeated structural elements) are often considered as an extra source of variability, and gains and losses of repeats may be an important force driving the evolution and diversification of such proteins, that could allow fast adaptation to new environments. Here, we report genomic sequences of the MAP-1 protein family from of the asexual, plant-parasitic nematode Meloidogyne incognita. The encoded proteins exhibited highly conserved repeats of 13 and 58 aa, and variation in the number and arrangement of these repeats in the MAP-1 proteins was correlated with nematode (a)virulence, suggesting a possible role in the specificity of the plant-nematode interaction. Search in the complete genome sequence of M. incognita confirmed that a small gene family encoding proteins harboring conserved 58 and 13 aa-repeats is present in this nematode, and that the repetitive region of these proteins is modular. Both gene duplication and intragenic gain and loss of repeats have contributed to the complex evolutionary history of the map-1 gene family, and active selection pressure of the plant host probably induced recent additional gene loss, finally resulting in the present-day gene and repeat diversity observed among nematode lines. The genomic differences characterized here between avirulent and virulent individuals are assumed to reflect, at the DNA level, the adaptive capacity of these asexual root-knot nematodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.