An updated analysis of observed stratospheric temperature variability and trends is presented on the basis of satellite, radiosonde, and lidar observations. Satellite data include measurements from the series of NOAA operational instruments, including the Microwave Sounding Unit covering 1979-2007 and the Stratospheric Sounding Unit (SSU) covering 1979-2005. Radiosonde results are compared for six different data sets, incorporating a variety of homogeneity adjustments to account for changes in instrumentation and observational practices. Temperature changes in the lower stratosphere show cooling of ~0.5 K/decade over much of the globe for 1979-2007, with some differences in detail among the different radiosonde and satellite data sets. Substantially larger cooling trends are observed in the Antarctic lower stratosphere during spring and summer, in association with development of the Antarctic ozone hole. Trends in the lower stratosphere derived from radiosonde data are also analyzed, for a longer record (back to 1958); trends for the presatellite era (1958-1978) have a large range among the different homogenized data sets, implying large trend uncertainties. Trends in the middle and upper stratosphere have been derived from updated SSU data, taking into account changes in the SSU weighting functions due to observed atmospheric CO2 increases. The results show mean cooling of 0.5-1.5 K/decade during 1979-2005, with the greatest cooling in the upper stratosphere near 40-50 km. Temperature anomalies throughout the stratosphere were relatively constant during the decade 1995-2005. Long records of lidar temperature measurements at a few locations show reasonable agreement with SSU trends, although sampling uncertainties are large in the localized lidar measurements. Updated estimates of the solar cycle influence on stratospheric temperatures show a statistically significant signal in the tropics (~30°N-S), with an amplitude (solar maximum minus solar minimum) of ~0.5 K (lower stratosphere) to ~1.0 K (upper stratosphere)
changes, which could explain the larger changes in Antarctic precipitation simulated by these models. The agreement between the models, CloudSat data and ERA-Interim is generally less in the interior of Antarctica than at the peripheries, but the interior is also where climate change will induce the smallest absolute change in precipitation. About three-quarters of the impact on sea level will result from precipitation change over the half most peripheral and lowest elevation part of the surface of Antarctica.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.