Interactions of phosphate derivatives of 2,6-dihydroxynaphthalene (NA-P(2)) and 1,6-dihydroxy-2-naphthaldehyde (HNA-P, phosphate at position 6) with fructose-1,6-bisphosphate aldolase from rabbit muscle were analyzed by enzyme kinetics, difference spectroscopy, site-directed mutagenesis, mass spectrometry, and molecular dynamics. Enzyme activity was competitively inhibited by NA-P(2), whereas HNA-P exhibited slow-binding inhibition with an overall inhibition constant of approximately 24 nM. HNA-P inactivation was very slowly reversed with t(1/2) approximately 10 days. Mass spectrometry and spectrophotometric absorption indicated that HNA-P inactivation occurs by Schiff base formation. Rates of enzyme inactivation and Schiff base formation by HNA-P were identical and corresponded to approximately 4 HNA-P molecules bound par aldolase tetramer at maximal inhibition. Site-directed mutagenesis of conserved active site lysine residues 107, 146, and 229 and Asp-33 indicated that Schiff base formation by HNA-P involved Lys-107 and was promoted by Lys-146. Titration of Lys-107 by pyridoxal 5-phosphate yielded a microscopic pK(a) approximately 8 for Lys-107, corroborating a role as nucleophile at pH 7.6. Site-directed mutagenesis of Ser-271, an active site residue that binds the C(1)-phosphate of dihydroxyacetone phosphate, diminished HNA-P binding and enabled modeling of HNA-P in the active site. Molecular dynamics showed persistent HNA-P phosphate interactions with the C(1)-phosphate binding site in the noncovalent adduct. The naphthaldehyde hydroxyl, ortho to the HNA-P aldehyde, was essential for promoting carbinolamine precursor formation by intramolecular catalysis. The simulations indicate a slow rate of enzyme inactivation due to competitive inhibition by the phenate form of HNA-P, infrequent nucleophilic attack in the phenol form, and significant conformational barrier to bond formation as well as electrostatic destabilization of protonated ketimine intermediates. Solvent accessibility by Lys-107 Nz was reduced in the covalent Schiff base complex, and in those instances where water molecules interacted with Lys-107 in the simulations, Schiff base hydrolysis was not mechanistically favorable. The findings at the molecular level corroborate the observed mechanism of slow-binding tight inhibition by HNA-P of muscle aldolase and should serve as a blueprint for future aldolase inhibitor design.
An irreversible competitive inhibitor hydroxynaphthaldehyde phosphate was synthesized that is highly selective against the glycolytic enzyme fructose 1,6-bisphosphate aldolase from Trypanosoma brucei (causative agent of sleeping sickness). Inhibition involves Schiff base formation by the inhibitor aldehyde with Lys116 followed by reaction of the resultant Schiff base with a second residue. Molecular simulations indicate significantly greater molecular geometries conducive for nucleophilic attack in T. brucei aldolase than the mammalian isozyme and suggest Ser48 as the Schiff base modifying residue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.