Flavonoids are potent antioxidants. It is also known that flavonoids bind to proteins. The effect of the interaction between tea flavonoids and proteins on the antioxidant capacity was examined. Their separate and combined antioxidant capacities were measured with the Trolox equivalent antioxidant capacity (TEAC) assay. It was observed that the antioxidant capacity of several components of green and black tea with alpha-, beta-, and kappa-casein or albumin is not additive; that is, a part of the total antioxidant capacity is masked by the interaction. This masking depends on both the protein and the flavonoid used. Components in green and black tea, which show the highest masking in combination with beta-casein, are epigallocatechin gallate and gallic acid. The results demonstrate that the matrix influences the efficacy of an antioxidant.
The inhibition of the lipid peroxidation, induced by iron and ascorbate in rat liver microsomes, by phenols and flavones was studied. The activity of phenol was enhanced by electron donating substituents, denoted by the Hammett sigma (sigma). The concentration of the substituted phenols giving 50% inhibition (IC50) of lipid peroxidation gave a good correlation with the sigma of the substituent (ln(1/IC50) = -8.92sigma + 5.80 (R = 0.94, p < 0.05)). In flavones two pharmacophores for the protection against lipid peroxidation were pinpointed: (i) a catechol moiety as ring B and (ii) an OH-group at the 3 position with electron donating groups at the 5 and/or 7 position in the AC-ring. An example of a flavone with the latter pharmacophore is galangin (3,5,7-trihydroxyflavone) where the reactivity of the 3-OH-group is enhanced by the electron donating effect of the 5- and 7-OH-groups. This is comparable to the effect of electron donating substituents on the activity of phenol. The prooxidant activity of flavones has been related to a low half peak oxidation potential (Ep/2). All flavones with a catechol as ring B have very low Ep/2, suggesting that they display a prominent prooxidant activity. In contrast, the Ep/2 varies within the group of flavones with a 3-OH, e.g. TUM 8436 (5,7,3',4'-tetra-O-methyl-quercetin) has a relatively high Ep/2 and is an excellent protector against lipid peroxidation. Apparently amongst the flavones with the pharmacophore in the AC-ring there are good antioxidants that are expected to display no or limited prooxidant properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.