Pesticides are applied in large quantities to agroecosystems worldwide. To date, few studies assessed the occurrence of pesticides in organically managed agricultural soils, and it is unresolved whether these pesticide residues affect soil life. We screened 100 fields under organic and conventional management with an analytical method containing 46 pesticides (16 herbicides, 8 herbicide transformation products, 17 fungicides, seven insecticides). Pesticides were found in all sites, including 40 organic fields. The number of pesticide residues was two times and the concentration nine times higher in conventional compared to organic fields. Pesticide number and concentrations significantly decreased with the duration of organic management. Even after 20 years of organic agriculture, up to 16 different pesticide residues were present. Microbial biomass and specifically the abundance of arbuscular mycorrhizal fungi, a widespread group of beneficial plant symbionts, were significantly negatively linked to the amount of pesticide residues in soil. This indicates that pesticide residues, in addition to abiotic factors such as pH, are a key factor determining microbial soil life in agroecosystems. This comprehensive study demonstrates that pesticides are a hidden reality in agricultural soils, and our results suggest that they have harmful effects on beneficial soil life.
In recent years there has been an upsurge of studies on ecosystem multifunctionality (EMF), or the ability of ecosystems to simultaneously provide multiple functions and/or services. The concept of EMF itself, the analytical approaches used to calculate it, and its implications depending on the spatial scale and field of study have been discussed in detail. However, to date there has been little dialogue concerning the basis of EMF studies: what should or should not be considered appropriate measures for ecosystem functions. To begin this discussion, we performed an in‐depth review of EMF studies across four major terrestrial ecosystems (agroecosystems, drylands, forests and grasslands) by analysing 82 studies, which together have assessed 775 ecosystem functions from a variety of field and greenhouse experiments across the globe. The number of ecosystem functions analysed varied from two to 82 per study and we found large differences in the distribution of functions across ecosystem types and ecosystem service categories. Furthermore, there was little explanation of why certain variables were included in the EMF calculation or how they relate to ecosystem functioning. Synthesis. Based on the literature analysis, it is clear that there is no general agreement regarding which measurements should or should not be considered functions in the field of ecology. To address this issue, we propose a general guideline for determining and measuring appropriate functions.
In natural ecosystems, positive effects of plant diversity on ecosystem functioning have been widely observed, yet whether this is true in cropping systems remains unclear. Here we assessed the impact of crop diversification on soil microbial diversity, soil multifunctionality (SMF), and crop yields in 155 cereal fields across a 3,000 km North-South European gradient. Overall, crop diversity showed a relatively minor effect on soil microbial diversity, SMF and yields. In contrast, the proportion of time with crop cover (including cash crops, cover crops, or forage leys) during the past ten-year crop rotation had a much stronger impact. This suggests that increasing crop cover can enhance both yields and soil functioning, while also providing habitat for soil microorganisms. We found that SMF did not positively contribute to crop yields, highlighting that care must be taken to balance the provision of food with environmentally beneficial functions and services, since they do not always go hand in hand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.