In recent years there has been an upsurge of studies on ecosystem multifunctionality (EMF), or the ability of ecosystems to simultaneously provide multiple functions and/or services. The concept of EMF itself, the analytical approaches used to calculate it, and its implications depending on the spatial scale and field of study have been discussed in detail. However, to date there has been little dialogue concerning the basis of EMF studies: what should or should not be considered appropriate measures for ecosystem functions. To begin this discussion, we performed an in‐depth review of EMF studies across four major terrestrial ecosystems (agroecosystems, drylands, forests and grasslands) by analysing 82 studies, which together have assessed 775 ecosystem functions from a variety of field and greenhouse experiments across the globe. The number of ecosystem functions analysed varied from two to 82 per study and we found large differences in the distribution of functions across ecosystem types and ecosystem service categories. Furthermore, there was little explanation of why certain variables were included in the EMF calculation or how they relate to ecosystem functioning. Synthesis. Based on the literature analysis, it is clear that there is no general agreement regarding which measurements should or should not be considered functions in the field of ecology. To address this issue, we propose a general guideline for determining and measuring appropriate functions.
Background: The dynamics of phosphorus (P) in the environment is important for regulating nutrient cycles in natural and managed ecosystems and an integral part in assessing biological resilience against environmental change. Organic P (Po) compounds play key roles in biological and ecosystems function in the terrestrial environment being critical to cell function, growth and reproduction. Scope: We asked a group of experts to consider the global issues associated with Po in the terrestrial environment, methodological strengths and weaknesses, benefits to be gained from understanding the Po cycle, and to set priorities for Po research. Conclusions: We identified seven key opportunities for Po research including: the need for integrated, quality controlled and functionally based methodologies; assessment of stoichiometry with other elements in organic matter; understanding the dynamics of Po in natural and managed systems; the role of microorganisms in controlling Po cycles; the implications of nanoparticles in the environment and the need for better modelling and communication of the research. Each priority is discussed and a statement of intent for the Po research community is made that highlights there are key contributions to be made toward understanding biogeochemical cycles, dynamics and function of natural ecosystems and the management of agricultural systems
In natural ecosystems, positive effects of plant diversity on ecosystem functioning have been widely observed, yet whether this is true in cropping systems remains unclear. Here we assessed the impact of crop diversification on soil microbial diversity, soil multifunctionality (SMF), and crop yields in 155 cereal fields across a 3,000 km North-South European gradient. Overall, crop diversity showed a relatively minor effect on soil microbial diversity, SMF and yields. In contrast, the proportion of time with crop cover (including cash crops, cover crops, or forage leys) during the past ten-year crop rotation had a much stronger impact. This suggests that increasing crop cover can enhance both yields and soil functioning, while also providing habitat for soil microorganisms. We found that SMF did not positively contribute to crop yields, highlighting that care must be taken to balance the provision of food with environmentally beneficial functions and services, since they do not always go hand in hand.
Phosphorus (P) acquisition is key for plant growth. Arbuscular mycorrhizal fungi (AMF) help plants acquire P from soil. Understanding which factors drive AMF-supported nutrient uptake is essential to develop more sustainable agroecosystems. Here, we collected soils from 150 cereal fields and 60 non-cropped grassland sites across a 3,000 km trans-European gradient. In a greenhouse experiment, we tested the ability of AMF in these soils to forage for the radioisotope 33 P from a hyphal compartment. AMF communities in grassland soils were much more efficient in acquiring 33 P and transferred 64% more 33 P to plants compared to AMF in cropland soils. Fungicide application best explained hyphal 33 P transfer in cropland soils. The use of fungicides and subsequent decline in AMF richness in croplands reduced 33 P uptake by 43%. Our results suggest that land-use intensity and fungicide use are major deterrents to the functioning and natural nutrient uptake capacity of AMF in agroecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.