Within the lysosomal cysteine protease family, cathepsin B is unique due to its ability to act both as an endopeptidase and a peptidyldipeptidase. This latter capacity to remove C-terminal dipeptides has been attributed to the presence of a 20-residue insertion, termed the occluding loop, that blocks the primed terminus of the active site cleft. Variants of human procathepsin B, where all or part of this element was deleted, were expressed in the yeast Pichia pastoris. A mutant, where the 12 central residues of the occluding loop were deleted, autoprocessed, albeit more slowly than the wild type proenzyme, to yield a mature form of the enzyme with endopeptidase activity comparable with the wildtype cathepsin B, but totally lacking exopeptidase activity. This deletion mutant showed a 40-fold higher affinity for the inhibitor cystatin C, suggesting that the occluding loop normally restricts access of this inhibitor to the active site. In addition, the binding affinity of the cathepsin B propeptide, which is a potent inhibitor of this enzyme, was 50-fold increased, consistent with the finding that the loop reorients on activation of the proenzyme. These results suggest that the endopeptidase activity of cathepsin B is an evolutionary remnant since, as a consequence of its membership in the papain family, the propeptide must be able to bind unobstructed through the full length of the active site cleft.The lysosomal cysteine protease cathepsin B is unique within the papain superfamily in that it acts both as an endopeptidase and an exopeptidase. Thus in addition to making internal cleavages (1), it also removes C-terminal dipeptide units from the substrate (peptidyldipeptidase activity) (2). The x-ray crystal structure of cathepsin B suggests the molecular basis for this dual character. Relative to other papain-like proteases, cathepsin B contains an extra structural element termed the "occluding loop" (3), which blocks off one end of the substrate binding cleft (see Fig. 1a). As proposed by Schechter and Berger (4), the protease active site cleft is considered to consist of a series of subsites, each accommodating an amino acid residue of the peptide substrate. Those subsites binding the residues C-terminal to the peptide bond undergoing cleavage are termed the primed sites (S 1 Ј to S 3 Ј ) and accept the P 1 Ј to P 3 Ј substrate residues. The subsites accepting the N-terminal side of the substrate, the P 1 to P 3 residues, are termed the unprimed sites (S 1 to S 3 , with the numbering in each case starting with the residues bordering the cleavage site). The structure of rat cathepsin B containing the covalently bound inhibitor Z-Arg-Ser(OBz)-chloromethylketone (where Z represents benzyloxycarbonyl and Bz represents benzoyl) (5) maps out the unprimed substrate binding subsites and indicates that the occluding loop plays a defining role in primed site specificity. The strategic position of two histidine residues in this loop (His 110 and His 111 ) 1 suggests that they can act as acceptors for the negatively charged ...
AlphaScreen (Amplified Luminescent Proximity Homogeneous Assay Screen) is versatile assay technology developed to measuring analytes using a homogenous protocol. This technology is an example of a bead-based proximity assay and was developed from a diagnostic assay technology known as LOCI (Luminescent Oxygen Channeling Assay). Here, singlet oxygen molecules, generated by high energy irradiation of Donor beads, travel over a constrained distance (approx. 200 nm) to Acceptor beads. This results in excitation of a cascading series of chemical reactions, ultimately causing generation of a chemiluminescent signal.In the past decade, a wide variety of applications has been reported, ranging from detection of analytes involved in cell signaling, including protein:protein, protein:peptide, protein:small molecule or peptide:peptide interactions. Numerous homogeneous HTS-optimized assays have been reported using the approach, including generation of second messengers (such as accumulation of cyclic AMP, cyclic GMP, inositol [1, 4, 5] trisphosphate or phosphorylated ERK) from liganded GPCRs or tyrosine kinase receptors, post-translational modification of proteins (such as proteolytic cleavage, phosphorylation, ubiquination and sumoylation) as well as protein-protein and protein-nucleic acid interactions.Recently, the basic AlphaScreen technology was extended in that the chemistry of the Acceptor bead was modified such that emitted light is more intense and spectrally defined, thereby markedly reducing interference from biological fluid matrices (such as trace hemolysis in serum and plasma). In this format, referred to as AlphaLISA, it provides an alternative technology to classical ELISA assays and is suitable for high throughput automated fluid dispensing and detection systems.Collectively, AlphaScreen and AlphaLISA technologies provide a facile assay platform with which one can quantitate complex cellular processes using simple no-wash microtiter plate based assays. They provide the means by which large compound libraries can be screened in a high throughput fashion at a diverse range of therapeutically important targets, often not readily undertaken using other homogeneous assay technologies. This review assesses the current status of the technology in drug discovery, in general, and high throughput screening (HTS), in particular.
New developments in detection technologies are providing a variety of biomolecular screening strategies from which to choose. Consequently, we performed a detailed analysis of both separation-based and non-separation-based formats for screening nuclear receptor ligands. In this study, time-resolved fluorescence resonance energy transfer (TR-FRET), ALPHAScreen, and time-resolved fluorescence (TRF) assays were optimized and compared with respect to sensitivity, reproducibility, and miniaturization capability. The results showed that the ALPHAScreen system had the best sensitivity and dynamic range. The TRF assay was more time consuming because of the number of wash steps necessary. The TR-FRET assay had less interwell variation, most likely because of ratiometric measurement. Both the ALPHAScreen and the TR-FRET assays were miniaturized to 8-μl volumes. Of the photomultiplier tube-based readers, the ALPHAScreen reader (ALPHAQuest) presented the advantage of faster reading times through simultaneous reading with four photomultiplier tubes.
New developments in detection technologies are providing a variety of biomolecular screening strategies from which to choose. Consequently, we performed a detailed analysis of both separation-based and non-separation-based formats for screening nuclear receptor ligands. In this study, time-resolved fluorescence resonance energy transfer (TR-FRET), ALPHAScreen, and time-resolved fluorescence (TRF) assays were optimized and compared with respect to sensitivity, reproducibility, and miniaturization capability. The results showed that the ALPHAScreen system had the best sensitivity and dynamic range. The TRF assay was more time consuming because of the number of wash steps necessary. The TR-FRET assay had less interwell variation, most likely because of ratiometric measurement. Both the ALPHAScreen and the TR-FRET assays were miniaturized to 8-microl volumes. Of the photomultiplier tube-based readers, the ALPHAScreen reader (ALPHAQuest) presented the advantage of faster reading times through simultaneous reading with four photomultiplier tubes.
Kinases represents one of the most important family of targets in high throughput drug screening. Tyrosine kinases and serine/threonine kinases are known to play key roles in signal transduction as well as in cell growth and differentiation. Intense screening campaigns are underway in all major pharmaceuticals and large biotech companies to find kinase inhibitors for the treatment of inflammatory diseases, immunological disorders and cancer. The present contribution describes models that were developed to produce kinase assays amenable to HTS using AlphaScreen. Because of the flexibility allowed by AlphaScreen, kinase assays can be developed using direct or indirect approaches. Tyrosine kinase assays are usually performed with a direct format involving generic anti-phosphotyrosine antibodies while serine/threonine kinase assays are performed with an indirect format where specific antibodies are captured using protein A conjugated Acceptor beads. Streptavidin-coated Donor beads are used to capture either generic (ex. poly GT) or specific biotinylated substrates. Herein, are presented different methods to perform screening for inhibitors acting on the soluble beta-insulin receptor tyrosine kinase (IRKD), and on p38, a member of the MAP kinase family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.