Ether glycerolipids extracted from various archaeobacteria were formulated into liposomes (archaeosomes) possessing strong adjuvant properties. Mice of varying genetic backgrounds, immunized by different parenteral routes with bovine serum albumin (BSA) entrapped in archaeosomes (ϳ200-nm vesicles), demonstrated markedly enhanced serum anti-BSA antibody titers. These titers were often comparable to those achieved with Freund's adjuvant and considerably more than those with alum or conventional liposomes (phosphatidylcholine-phosphatidylglycerol-cholesterol, 1.8:0.2:1.5 molar ratio). Furthermore, antigen-specific immunoglobulin G1 (IgG1), IgG2a, and IgG2b isotype antibodies were all induced. Association of BSA with the lipid vesicles was required for induction of a strong response, and >80% of the protein was internalized within most archaeosome types, suggesting efficient release of antigen in vivo. Encapsulation of ovalbumin and hen egg lysozyme within archaeosomes showed similar immune responses. Antigen-archaeosome immunizations also induced a strong cell-mediated immune response: antigen-dependent proliferation and substantial production of cytokines gamma interferon (Th1) and interleukin-4 (IL-4) (Th2) by spleen cells in vitro. In contrast, conventional liposomes induced little cell-mediated immunity, whereas alum stimulated only an IL-4 response. In contrast to alum and Freund's adjuvant, archaeosomes composed of Thermoplasma acidophilum lipids evoked a dramatic memory antibody response to the encapsulated protein (at ϳ300 days) after only two initial immunizations (days 0 and 14). This correlated with increased antigen-specific cell cycling of CD4 ؉ T cells: increase in synthetic (S) and mitotic (G 2 /M) and decrease in resting (G 1 ) phases. Thus, archaeosomes may be potent vaccine carriers capable of facilitating strong primary and memory humoral, and cell-mediated immune responses to the entrapped antigen.
Archaeosomes prepared from total polar lipids extracted from six archaeal species with divergent lipid compositions had the capacity to deliver antigen for presentation via both MHC class I and class II pathways. Lipid extracts from Halobacterium halobium and from Halococcus morrhuae strains 14039 and 16008 contained archaetidylglycerol methylphosphate and sulfated glycolipids rich in mannose residues, and lacked archaetidylserine, whereas the opposite was found in Methanobrevibacter smithii, Methanosarcina mazei and Methanococcus jannaschii. Annexin V labeling revealed a surface orientation of phosphoserine head groups in M. smithii, M. mazei and M. jannaschii archaeosomes. Uptake of rhodamine-labeled M. smithii or M. jannaschii archaeosomes by murine peritoneal macrophages was inhibited by unlabeled liposomes containing phosphatidylserine, by the sulfhydryl inhibitor N-ethylmaleimide, and by ATP depletion using azide plus fluoride, but not by H. halobium archaeosomes. In contrast, N-ethylmaleimide failed to inhibit uptake of the four other rhodamine-labeled archaeosome types, and azide plus fluoride did not inhibit uptake of H. halobium or H. morrhuae archaeosomes. These results suggest endocytosis of archaeosomes rich in surface-exposed phosphoserine head groups via a phosphatidylserine receptor, and energy-independent surface adsorption of certain other archaeosome composition classes. Lipid composition affected not only the endocytic mechanism, but also served to differentially modulate the activation of dendritic cells. The induction of IL-12 secretion from dendritic cells exposed to H. morrhuae 14039 archaeosomes was striking compared with cells exposed to archaeosomes from 16008. Thus, archaeosome types uniquely modulate antigen delivery and dendritic cell activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.