We present a new tree construction method that constructs a tree with minimum score for a given set of sequences, where the score is the amount of evolution measured in PAM distances. To do this, the problem of tree construction is reduced to the Traveling Salesman Problem (TSP). The input for the TSP algorithm are the pairwise distances of the sequences and the output is a circular tour through the optimal, unknown tree plus the minimum score of the tree. The circular order and the score can be used to construct the topology of the optimal tree. Our method can be used for any scoring function that correlates to the amount of changes along the branches of an evolutionary tree, for instance it could also be used for parsimony scores, but it cannot be used for least squares fit of distances. A TSP solution reduces the space of all possible trees to 2n. Using this order, we can guarantee that we reconstruct a correct evolutionary tree if the absolute value of the error for each distance measurement is smaller than f2.gif" BORDER="0">, where f3.gif" BORDER="0">is the length of the shortest edge in the tree. For data sets with large errors, a dynamic programming approach is used to reconstruct the tree. Finally simulations and experiments with real data are shown.
Multiple sequence alignments (MSAs) are frequently used in the study of families of protein sequences or DNA/RNA sequences. They are a fundamental tool for the understanding of the structure, functionality and, ultimately, the evolution of proteins. A new algorithm, the Circular Sum (CS) method, is presented for formally evaluating the quality of an MSA. It is based on the use of a solution to the Traveling Salesman Problem, which identifies a circular tour through an evolutionary tree connecting the sequences in a protein family. With this approach, the calculation of an evolutionary tree and the errors that it would introduce can be avoided altogether. The algorithm gives an upper bound, the best score that can possibly be achieved by any MSA for a given set of protein sequences. Alternatively, if presented with a specific MSA, the algorithm provides a formal score for the MSA, which serves as an absolute measure of the quality of the MSA. The CS measure yields a direct connection between an MSA and the associated evolutionary tree. The measure can be used as a tool for evaluating different methods for producing MSAs. A brief example of the last application is provided. Because it weights all evolutionary events on a tree identically, but does not require the reconstruction of a tree, the CS algorithm has advantages over the frequently used sum-of-pairs measures for scoring MSAs, which weight some evolutionary events more strongly than others. Compared to other weighted sum-of-pairs measures, it has the advantage that no evolutionary tree must be constructed, because we can find a circular tour without knowing the tree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.