SUMMARYTo obtain further insight into the intricate inter-play between maize (Zea mays) and the fungal pathogen Colletotrichum graminicola, the local and systemic molecular and chemical defence responses of maize leaves and roots were simultaneously investigated and compared. Similar gene expression and hormonal patterns were detected in both above-and below-ground organs; however, roots responded more rapidly and accumulated higher levels of defence-related hormones than leaves. Leaf and root infection with C. graminicola triggered systemic resistance in the foliage against the same fungus. This systemic defence response was associated with systemic transcriptional adaptations, and elevated levels of salicylic acid and abscisic acid. Metabolomic profiling revealed significant differences in the composition of secondary metabolites in leaves and roots, indicating that these organs employ distinct chemical defence systems. In addition, higher basal levels of antimicrobial flavonoids suggest an enhanced basal defensive state of roots. Our findings reveal tissue-specific local and systemic antifungal defence mechanisms in maize.
Pseudomonas putida KT2440 (KT2440) rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots) and systemic (leaves) early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots 3 days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR) against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal growth in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as resistance inducers.
Determining links between plant defence strategies is important to understand plant evolution and to optimize crop breeding strategies. Although several examples of synergies and trade-offs between defence traits are known for plants that are under attack by multiple organisms, few studies have attempted to measure correlations of defensive strategies using specific single attackers. Such links are hard to detect in natural populations because they are inherently confounded by the evolutionary history of different ecotypes. We therefore used a range of 20 maize inbred lines with considerable differences in resistance traits to determine if correlations exist between leaf and root resistance against pathogens and insects. Aboveground resistance against insects was positively correlated with the plant's capacity to produce volatiles in response to insect attack. Resistance to herbivores and resistance to a pathogen, on the other hand, were negatively correlated. Our results also give first insights into the intraspecific variability of root volatiles release in maize and its positive correlation with leaf volatile production. We show that the breeding history of the different genotypes (dent versus flint) has influenced several defensive parameters. Taken together, our study demonstrates the importance of genetically determined synergies and trade-offs for plant resistance against insects and pathogens.
Although plants possess an arsenal of constitutive defences such as structural barriers and preformed antimicrobial defences, many attackers are able to overcome the pre-existing defence layers. In response, a range of inducible plant defences is set up to battle these pathogens. These mechanisms, commonly integrated as induced resistance (IR), control pathogens and pests by the activation of specific defence pathways. IR mechanisms have been extensively studied in the Dicotyledoneae, whereas knowledge of IR in monocotyledonous plants, including the globally important graminaceous crop plants, is elusive. Considering the potential of IR for sustainable agriculture and the recent advances in monocot genomics and biotechnology, IR in monocots is an emerging research field. In the following, current facts and trends concerning basal immunity, and systemic acquired/induced systemic resistance in the defence of monocots against pathogens and herbivores will be summarized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.